Empirical mode decomposition (EMD) and Hilbert spectral analysis (HSA) represent a desperate attempt to break the suffocating hold on data analysis by the twin assumptions of linearity and stationarity. To analyze the data from nonlinear and non-stationary processes, various attempts such as Spectrograms, Wavelet analysis, and the Wigner-Ville distribution have been made, but the EMD-HSA approach is unique and different from the existing methods of data analysis. The EMD-HAS is truly an adaptive time-frequency analysis. It does not require an a priori functional basis. Instead, the basis functions are derived adaptively from the data by the EMD sifting procedures; the instantaneous frequencies are computed from derivatives of the phase functions of the Hilbert transform of the basis functions; the final result is presented in the time-frequency space. The EMD-HSA is a magnifying glass for analyzing the data from nonlinear and non-stationary processes. The EMD-HSA results are intriguing and are no longer shackled by spurious harmonics (the artifacts of imposing a linearity property on a nonlinear system) or limited by the uncertainty principle (the consequence of Fourier transform pairs in data analysis).

EMD-HSA was originally designed in 1995 specifically to study water surface wave evolution, the phenomenon of high frequency waves with short fetch evolving into low frequency waves at long fetch. With the EMD-HSA method, it was found that the evolution of the waves was not continuous but abrupt, discrete and local. Subsequently, NEH spent two years visiting Caltech at the invitation of Professor Theodore Y. Wu. Under the guidance of Professor Wu and Professor Owen M. Phillips of the Johns Hopkins University, the EMD-HSA method was further developed and various applications explored. Professor Wu designated the method as the Hilbert-Huang Transform (HHT), a name later adopted by NASA to avoid the awkward name of EMD-HSA. It is only fair to say that the HHT would not have been developed without the encouragement and guidance of Professors Wu and Phillips.

The HHT’s power and effectiveness in data analysis have been demonstrated by its successful application to many important problems covering engineering, biomedical, financial and geophysical data. The mathematical development of the HHT, however, is undergoing the same path as other significant and historical data analysis methods as in Fourier analysis and wavelet analysis: Applications are leading to development, and the mathematical theories are following, since the methods were motivated by applications. Mathematicians’ apparent interest in the HHT motivated our organization of an HHT mini-symposium at the joint meeting between

This book contains most of the presentations made at the mini-symposium with some additions. The book contents are divided into two groups: the theoretical aspects and the applications, with the applications further grouped into geophysics, structural safety, and visualization. In the theoretical aspects, the chapters cover the attempts of mathematicians to apply rigor to the empirical method such as the representation of the IMF by B-spline functions, filter based decompositions, and the statistical characteristics of the IMFs. This book also represents a plea for help from the mathematical community. A list of outstanding mathematical problems is given in Chapter 1. The chapters on applications include the correction of satellite orbit drifting, detection of failure of highway bridges and other structures, discoveries of the patterns and anomalies in climate data, and calculation of the instantaneous frequency of water waves. The objectives of the book are to provide HHT users with a collection of successful HHT applications, to supply graduate students and researchers with an HHT tutorial, and to inform data analysis mathematicians of the outstanding mathematical problems of HHT.

This book is intended as a reference for anyone who are involved in signal analysis by processing data from nonlinear and non-stationary systems. Although each chapter is independent from the others, it is sufficiently pedagogical so that every single chapter or the entire book is suitable as a part of a graduate course on signal analysis. To use this book efficiently, the readers should have background knowledge of calculus, Fourier transform, numerical analysis and differential equations. The HHT algorithm has been patented by NASA; non-commercial users may obtain it at the website: http://techtransfer.gsfc.nasa.gov.

Much effort went into compiling this collection of papers into a book form. In this processes, we owe our gratitude to Dr. Dean Duffy for his skillful editing and typesetting, and without his efficient and professional work, this book would not have been possible.

Norden E. Huang and Samuel S. P. Shen
Greenbelt, Maryland
CONTENTS

Preface v

Theoretical Aspects

1 Introduction to the Hilbert–Huang Transform and Its Related Mathematical Problems
Norden E. Huang

1.1 Introduction ... 1
1.2 The Hilbert–Huang transform 2
 1.2.1 The empirical mode decomposition method (the sifting process) 4
 1.2.2 The Hilbert spectral analysis 12
1.3 Recent developments 14
 1.3.1 Normalized Hilbert transform 15
 1.3.2 Confidence limit 17
 1.3.3 Statistical significance of IMFs 18
1.4 Mathematical problems related to the HHT 18
 1.4.1 Adaptive data-analysis methodology 19
 1.4.2 Nonlinear system identification 19
 1.4.3 The prediction problem for nonstationary processes (the end effects of EMD) 20
 1.4.4 Spline problems (the best spline implementation for HHT, convergence and 2-D) 21
 1.4.5 The optimization problem (the best IMF selection and uniqueness mode mixing) 22
 1.4.6 Approximation problems (the Hilbert transform and quadrature) 23
 1.4.7 Miscellaneous statistical questions concerning HHT 24
1.5 Conclusion ... 24

2 B-Spline Based Empirical Mode Decomposition
Sherman Riemenschneider, Bao Liu, Yuesheng Xu and Norden E. Huang

2.1 Introduction ... 27
2.2 A B-spline algorithm for empirical mode decomposition 29
2.3 Some related mathematical results 33
Contents

2.4 Performance analysis of BS-EMD .. 39
2.5 Application examples ... 45
2.6 Conclusion and future research topics 51

3 EMD Equivalent Filter Banks, from Interpretation to Applications 57
 Patrick Flandrin, Paulo Gonçalves and Gabriel Rilling

3.1 Introduction ... 57
3.2 A stochastic perspective in the frequency domain 58
 3.2.1 Model and simulations ... 58
 3.2.2 Equivalent transfer functions 59
3.3 A deterministic perspective in the time domain 63
 3.3.1 Model and simulations ... 63
 3.3.2 Equivalent impulse responses 63
3.4 Selected applications .. 64
 3.4.1 EMD-based estimation of scaling exponents 64
 3.4.2 EMD as a data-driven spectrum analyzer 68
 3.4.3 Denoising and detrending with EMD 69
3.5 Concluding remarks ... 73

4 HHT Sifting and Filtering ... 75
 Reginald N. Meeson

4.1 Introduction ... 75
4.2 Objectives of HHT sifting .. 77
 4.2.1 Restrictions on amplitude and phase functions 78
 4.2.2 End-point analysis .. 81
4.3 Huang's sifting algorithm ... 81
4.4 Incremental, real-time HHT sifting 82
 4.4.1 Testing for iteration convergence 83
 4.4.2 Time-warp analysis .. 84
 4.4.3 Calculating warped filter characteristics 85
 4.4.4 Separating amplitude and phase 86
4.5 Filtering in standard time ... 87
4.6 Case studies ... 89
 4.6.1 Simple reference example ... 89
 4.6.2 Amplitude modulated example 90
 4.6.3 Frequency modulated example 92
 4.6.4 Amplitude step example .. 95
 4.6.5 Frequency shift example .. 99
4.7 Summary and conclusions .. 102
 4.7.1 Summary of case study findings 102
 4.7.2 Research directions ... 103
Contents

5 Statistical Significance Test of Intrinsic Mode Functions 107
Zhaohua Wu and Norden E. Huang

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>107</td>
</tr>
<tr>
<td>5.2</td>
<td>Characteristics of Gaussian white noise in EMD</td>
<td>109</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Numerical experiment</td>
<td>110</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Mean periods of IMFs</td>
<td>110</td>
</tr>
<tr>
<td>5.2.3</td>
<td>The Fourier spectra of IMFs</td>
<td>111</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Probability distributions of IMFs and their energy</td>
<td>113</td>
</tr>
<tr>
<td>5.3</td>
<td>Spread functions of mean energy density</td>
<td>116</td>
</tr>
<tr>
<td>5.4</td>
<td>Examples of a statistical significance test of noisy data</td>
<td>119</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Testing of the IMFs of the NAOI</td>
<td>120</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Testing of the IMFs of the SOI</td>
<td>122</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Testing of the IMFs of the GASTA</td>
<td>123</td>
</tr>
<tr>
<td>5.4.4</td>
<td>A posteriori test</td>
<td>125</td>
</tr>
<tr>
<td>5.5</td>
<td>Summary and discussion</td>
<td>125</td>
</tr>
</tbody>
</table>

5.3.1 Application to Geophysics

6 The Application of Hilbert–Huang Transforms to Meteorological Datasets 129
Dean G. Duffy

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>129</td>
</tr>
<tr>
<td>6.2</td>
<td>Procedure</td>
<td>131</td>
</tr>
<tr>
<td>6.3</td>
<td>Applications</td>
<td>136</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Sea level heights</td>
<td>136</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Solar radiation</td>
<td>139</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Barographic observations</td>
<td>142</td>
</tr>
<tr>
<td>6.4</td>
<td>Conclusion</td>
<td>145</td>
</tr>
</tbody>
</table>

7 Empirical Mode Decomposition and Climate Variability 149
Katie Coughlin and Ka Kit Tung

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>149</td>
</tr>
<tr>
<td>7.2</td>
<td>Data</td>
<td>150</td>
</tr>
<tr>
<td>7.3</td>
<td>Methodology</td>
<td>152</td>
</tr>
<tr>
<td>7.4</td>
<td>Statistical tests of confidence</td>
<td>154</td>
</tr>
<tr>
<td>7.5</td>
<td>Results and physical interpretations</td>
<td>157</td>
</tr>
<tr>
<td>7.5.1</td>
<td>Annual cycle</td>
<td>158</td>
</tr>
<tr>
<td>7.5.2</td>
<td>Quasi-Biennial Oscillation (QBO)</td>
<td>159</td>
</tr>
<tr>
<td>7.5.3</td>
<td>ENSO-like mode</td>
<td>159</td>
</tr>
<tr>
<td>7.5.4</td>
<td>Solar cycle signal in the stratosphere</td>
<td>160</td>
</tr>
<tr>
<td>7.5.5</td>
<td>Fifth mode</td>
<td>161</td>
</tr>
</tbody>
</table>
Contents

7.5.6 Trends 162
7.6 Conclusions 162

8 EMD Correction of Orbital Drift Artifacts in Satellite Data Stream 167
Jorge E. Pinzón, Molly E. Brown and Compton J. Tucker

8.1 Introduction 167
8.2 Processing of NDVI imagery 169
8.3 Empirical mode decomposition 172
8.4 Impact of orbital drift on NDVI and EMD-SZA filtering 173
8.5 Results and discussion 176
8.6 Extension to 8-km data 180
8.7 Integration of NOAA-16 data 181
8.8 Conclusions 183

9 HHT Analysis of the Nonlinear and Non-Stationary Annual Cycle of Daily Surface Air Temperature Data 187
Samuel S. P. Shen, Tingting Shu, Norden E. Huang, Zhaohua Wu,
Gerald R. North, Thomas R. Karl and David R. Easterling

9.1 Introduction 187
9.2 Analysis method and computational algorithms 191
9.3 Data .. 194
9.4 Time analysis 195
9.4.1 Examples of the TAC and the NAC 195
9.4.2 Temporal resolution of data 197
9.4.3 Robustness of the EMD method 200
9.4.3.1 EMD separation of a known signal in a synthetic data set 200
9.4.3.2 Robustness with respect to data length 200
9.4.3.3 Robustness with respect to end conditions 202
9.5 Frequency analysis 202
9.5.1 Hilbert spectra of NAC 202
9.5.2 Variances of anomalies with respect to the NAC and TAC 204
9.5.3 Spectral power of the anomalies with respect to the NAC and TAC 205
9.6 Conclusions and discussion 207

10 Hilbert Spectra of Nonlinear Ocean Waves 211
Paul A. Hwang, Norden E. Huang, David W. Wang, and
Jame M. Kaihatu

10.1 Introduction 211
10.2 The Hilbert–Huang spectral analysis 212
Contents

10.3 Spectrum of wind-generated waves ... 216
10.4 Statistical properties and group structure 219
10.5 Summary .. 222

Applications to Structural Safety

11 EMD and Instantaneous Phase Detection of Structural Damage .. 227
Liming W. Salvino, Darryll J. Pine, Michael Todd and Jonathan M. Nichols

11.1 Introduction to structural health monitoring 227
11.2 Instantaneous phase and EMD ... 230
11.2.1 Instantaneous phase .. 230
11.2.2 EMD and HHT ... 231
11.2.3 Extracting an instantaneous phase from measured data 233
11.3 Damage detection application ... 234
11.3.1 One-dimensional structures .. 236
11.3.2 Experimental validations ... 239
11.3.3 Instantaneous phase detection ... 242
11.4 Frame structure with multiple damage ... 243
11.4.1 Frame experiment ... 244
11.4.2 Detecting damage by using the HHT spectrum 247
11.4.3 Detecting damage by using instantaneous phase features 249
11.4.4 Auto-regressive modeling and prediction error 252
11.4.5 Chaotic-attractor-based prediction error 255
11.5 Summary and conclusions ... 258

12 HHT-Based Bridge Structural Health-Monitoring Method .. 263
Norden E. Huang, Kang Huang and Wei-Ling Chiang

12.1 Introduction .. 263
12.2 A review of the present state-of-the-art methods 265
12.2.1 Data-processing methods .. 266
12.2.2 Loading conditions ... 268
12.2.3 The transient load .. 270
12.3 The Hilbert–Huang transform ... 271
12.4 Damage-detection criteria ... 272
12.5 Case study of damage detection ... 274
12.6 Conclusions ... 280
Contents

Applications to Visualization

13 Applications of HHT in Image Analysis 289

Steven R. Long

13.1 Introduction .. 289
13.2 Overview .. 290
13.3 The analysis of digital slope images 291
 13.3.1 The NASA laboratory 291
 13.3.2 The digital camera and set-up 292
 13.3.3 Acquiring experimental images 293
 13.3.4 Using EMD/HHT analysis on images 293
 13.3.5 The digital camera and set-up 293
 13.3.5.1 Volume computations and isosurface visualization ... 296
 13.3.5.2 Use of EMD/HHT in image decomposition 300
13.4 Summary .. 303

Index .. 307