
CHAPTER 3 

EMD EQUIVALENT FILTER BANKS, 
FROM INTERPRETATION TO APPLICATIONS 

Patrick Flandrin, Paulo GonCalvks and Gabriel Rilling 

Huang’s data-driven technique of empirical mode decomposition (EMD) is given a 
filter bank interpretation from two complementary perspectives. First, a stochas- 
tic approach operating in the frequency domain shows the spontaneous emergence 
of an equivalent dyadic filter bank structure when EMD is applied to the versatile 
class of fractional Gaussian noise processes. Second, a similar structure is observed 
when EMD is operated in the time domain on a deterministic pulse. A detailed 
statistical analysis of the observed behavior is carried out involving extensive 
numerical simulations that suggest a number of applications. New EMD-based 
approaches are used to estimate the scaling exponents in the case of self-similar 
processes, to perform a fully data-driven spectral analysis, and to denoise-detrend 
signals that contain noise. 

3.1. Introduction 

Empirical mode decomposition (EMD) has been recently pioneered by Huang et 
al. (1998) for adaptively decomposing signals into a sum of “well-behaved” AM- 
FM components consisting of natural “intrinsic” building blocks that describe the 
complicated waveform. The technique has already been employed successfully in 
various applications (Coughlin and Tung 2004; Fournier 2002; Huang et al. 1998; 
Net0 et al. 2004; Wu et al. 2001). 

Although EMD is quite simple in principle, it still lacks a theoretical foundation. 
Indeed, it is presently defined only as the output of an iterative algorithm, with no 
analytical definition that could be used for performance evaluation. The only way to 
better understand this technique is to resort to extensive numerical simulations in 
well-controlled situations. Such an “input-output’’ approach is adopted here, with 
the objective of obtaining a detailed, yet empirical, statistical knowledge of the 
EMD behavior, just as we might do for some unknown “filter” in signal processing. 

Because the EMD algorithm is not uniquely defined since it depends on a number 
of user-controlled tunings such as the particular interpolation scheme for envelope 
extraction, the stopping criterion criterion used in the sifting process, and the man- 
ner in which border effects are treated, we assume that its principle and the manner 
in which it is implemented are known. More precisely, the algorithm used in this 
study was developed on the basis on algorithmic considerations described in earlier 
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publications (see Rilling et al. 2003) and is available as a MATLAB code on the 
Internet (http://perso.ens-lyon.fr/patrick.flandrin/emd.html). 

3.2. A stochastic perspective in the frequency domain 

Our first characterization of EMD is carried out in the frequency domain from a 
stochastic perspective. The idea is to apply EMD to some broadband noise in order 
to understand how a full spectrum process is split into its “intrinsic mode functions” 
(IMF). One versatile class of full spectrum processes is provided by scaling processes 
for which wavelets (unanimously considered as a naturally fitted analysis tool; see 
Abry et al. 2000) can be used as a benchmark for performance evaluation. 

3.2.1. Model and simulations 

Fractional Gaussian noise (fGn, see Embrechts and Maejima 2002; Mandelbrot and 
van Ness 1968) is a generalization of ordinary white noise. It is a versatile model for a 
homogeneously spreading broadband noise without any dominant frequency band, is 
an intrinsically discrete-time process, and may be described as the increment process 
of fractional Brownian motion (fBm) since fBm is the only self-similar Gaussian 
process with stationary increments. Consequently the statistical properties of fGn 
are entirely determined by its second-order structure, which depends solely upon 
one single scalar parameter, H ,  its Hurst exponent. More precisely, { z ~ [ n ] , n  = 
. . . , -1,O, 1 , .  . . }  is a fGn of index H (with 0 < H < 1) if and only if it is a 
zero-mean Gaussian stationary process whose autocorrelation sequence T H  [k ]  := 
I E { z ~ [ n ] z ~ [ n  + k ] }  is 

a2 
r H [ k ]  = - 2 (Ik - 1IzH - 21kIzH + Ik + 1IzH) . (3.1) 

It is well known that the special case H = $ reduces to (discrete-time, uncorre- 
lated) white noise, whereas other values induce non-zero correlations, either negative 
when 0 < H < $ or positive when < H < 1 (long-range dependence). Taking the 
discrete Fourier transform of (3.1), we readily obtain the power spectrum density 
of fGn, or 

with I f [  5 $. If H # i, we have S H ( ~ )  N Ca2  l f 1 1 - 2 H  when f + 0. It therefore 
follows that fGn is a convenient model for power-law spectra at low frequencies. 
From its spectral properties, the particular value H = $ delineates two domains 
with contrasting behaviors. In the regime 0 < H < i, we have SH(O) = 0, and the 
spectrum is high-pass (sometimes referred to as an “ultraviolet” situation). On the 
other hand, within the range f < H < 1, we have SH(O) = 00 with a “l/f”-type 
spectral divergence (“infrared” catastrophe). In both situations, the power-law form 
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of the spectrum, although not exactly verified, is well approximated over most of the 
Nyquist frequency band. In other words, we have a quasi-linear relation in log-log 
coordinates, 

for most frequencies -f 5 f 5 :. 

3.2.2.  Equivalent transfer finctions 

Extensive simulations were carried out on fGn processes, with H values ranging 
from 0.1 to 0.9. The present study [whose results were first proposed in Flandrin 
et al. (2004) with further extensions in Flandrin and GonGalvks (2004)] generalizes 
the study conducted independently by Wu and Huang (2004) for white noise only 
(H = $) and consistently supports their findings. 

In all of our simulations, the data length was taken to be N = 512, and, for 
each value of H, J = 5000 independent sample paths of fGn were generated via 
the Wood and Chan (1994) algorithm. EMDs were computed for all sample paths 
{z$’[n]; n = 1,. . . N }  (with j = 1,. . . J ) ,  resulting in a collection of IMFs referred 

from one realization to the other, none of the realizations generated less than 7 
modes. Therefore, K = 7 has been taken in this study as the common number of 
modes for all realizations. 

Given this dataset, a spectral analysis was carried out mode by mode with the 
estimated power spectrum density (PSD) given by 

to as {dk,H[n]; Ci) n = 1,. . . N ;  k = 1,. . . Kj} .  Although the number Kj of IMFs varied 

N - 1  

& , E f ( f )  := c + k , H [ r n ]  w[m] e-zarrfm 1 lfl+, 
m = - N f l  

where w[n] is a Hamming taper, and 

is the ensemble average (over the J realizations) of the empirical estimates of the 
auto-correlation function. The result of this spectral analysis is plotted in Fig. 3.1, 
whose graphs reveal a number of striking features: 

(1) Regardless of the value of the Hurst exponent H ,  the behavior of the first IMF 
(thick line) differs from that of the other modes. To a first approximation, it 
possesses the characteristics of a high-pass filter while higher order modes be- 
have similarly to a band-pass filter. The (roughly half-band) high-pass character 
of the first mode must be tempered, however, by the fact that the maximum 
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Figure 3.1: IMF power spectra in the case of fractional Gaussian noise. The logarithm of the 
estimated power spectrum densities (log-PSD) is plotted as a function of the logarithm of the 
normalized frequency for the first seven IMFs. For H = 0.1,0.2,. . . ,0.9, the spectral estimates 
have been computed on the basis of 5 000 independent sample paths of 512 data points. Theoretical 
PSDs of the full processes are superimposed as dashed-dotted curves. (Originally published in Int. 
J .  Wavelets Multiresolut. Inform. Process., 2, 477-496, 02004 World Scientific.) 

attenuation in the stop-band is no more than 10 dB (as compared to the max- 
imum which occurs at the Nyquist frequency :, and there is a non-negligible 
contribution in the lower half-band in “ultraviolet” situations H < $). 

(2) As H varies from 0.1 to 0.9, the spectrum of the last IMF (k = 7) progres- 
sively evolves from band-pass to increasingly low-pass, in accordance with the 
increasing predominance of low frequencies (“infrared catastrophe”). 

(3) In a similar, but more general manner, the energy balance among the different 
modes reflects the behavior of the global spectrum (superimposed dashed-dotted 
curve) described by (3.2), the flat spectrum when H = $ (the case of white 
noise), and the increasing (decreasing) power-law spectrum when H < $ ( H  > 

(4) For modes k = 2 to 6 (band-pass IMFs), all the spectra appear nearly the 
same, with some shifts in abscissa and ordinate, and this finding is surprisingly 
reminiscent of what is currently being observed in wavelet decompositions (see 
Flandrin 1999; Mallat 1998). 

$1. 
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Figure 3.2: (a) IMF average number of zerecrossingszero-crossing in the case of fractional Gaus- 
sian noise. For clarity, only those curves corresponding to the extreme indices H = 0.1 (circles) and 
H = 0.9 (squares) have been plotted in the diagram; the remaining cases ( H  = 0.2,0.3,. . . ,0.8) 
lead to  regularly intertwined similar curves. The superimposed solid lines correspond to linear 
fits within the IMF range k = 2 to 6. (b) Corresponding decrease rate of zero-crossings (circles 
and dashed line), with the least-squares quadratic fit given by (3.4) superimposed as a solid line. 
(Originally published in Int. J .  Wavelets Multiresolut. Infomn. Process., 2, 477-496, 02004 World 
Scientific.) 

This last observation suggests that we should examine in greater detail how the 
different spectra are related to each other for a given H .  To this end, we can use 
the unique structure of IMFs: all extrema appear as an alternation of local minima 
and maxima separated by only one zero-crossing. Finding the average number of 
zero-crossings in a mode is, therefore, a meaningful way of characterizing its mean 
frequency. The average number of zero-crossings z ~ [ I c ]  is plotted in Fig. 3.2a as a 
function of the IMF number k ;  this figure suggests the functional relation 

where p~ very nearly equals 2. 
A more precise check of (3.3) is shown in Fig. 3.2b, where the estimated scaling 

factor p~ is given by the slope from a linear fit of a semi-log diagram of log, z ~ [ k ]  
vs. k for Ic = 2 to 6. The observed decrease in the number of zero-crossings as the 
order of the IMFs increases is nearly equal to 2 and may be approximated by the 
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Figure 3.3: Renormalized IMF spectra in the case of fractional Gaussian noise. For each value 
of H ,  the band-pass IMFs ( k  = 2 to 6) of Figure 3.1 are plotted according to the renormalization 
given by (3.5) with a = 2H - 1, and the values of p~ are given in Fig. 3.2b. (Originally published 
in Int. J .  Wavelets Multiresolut. Inform. Process., 2, 477-496, 02004 World Scientific.) 

quadratic expression: * 

(3.4) 

Using (7.4), we can improve our search for self-similarity in the “filter bank” struc- 
ture of Fig. 3.1. If we restrict ourselves to the band-pass IMFs ( k  = 2 to 6 ) ,  self- 
similarity means that 

(3.5) 
a ( k ‘ - k )  

S k ’ , H ( f )  = P H  S k , H ( P g - k f )  

for some Q: and any k’ > k 2 2 .  Consequently, the power spectra of all IMFs 
should collapse onto a single curve when properly renormalized. Indeed, setting 
Q: = 2H - 1 verifies this assumption as the corresponding renormalizations converge 
to the same template (see Fig. 3.3). Even if some low frequency discrepancies are 
present (especially when H < $ ) 1  these diagrams support our claim that, to a first 
approximation, EMD acts on fGn as a dyadic filter bank of constant-& band-pass 
filters. 

*The accuracy of this approximation is slightly dependent on the manner used to compute the 
IMFs and, in particular, on the choice of the stopping criterion used for the sifting process. Further 
studies will be necessary to clarify this point. 
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3.3. A deterministic perspective in the time domain 

Our second approach to the characterization of the filter-like structure of EMD is 
constructed deterministically and in the time domain. Therefore] we seek to obtain 
an equivalent impulse response of the analysis. 

3.3.1. Model and simulations 

Finding the impulse response of a system usually amounts to observing its output 
when excited with a Dirac pulse 6 ( t )  or, in discrete-time, a function 6[n] that is 
zero everywhere except when n = 0 with 6[0] = 1. Doing so is not possible here 
since such an input signal would not consist of enough local extrema to initiate the 
algorithm. An alternative is to consider an idealized pulse as the limit of a noisy 
pulse as the signal-to-noise ratio goes to infinity. from this point of view, we model 
the noisy pulse S,[n] := S[n] + E 21p[n], and the effective IMFs are defined as 

where dk,E[n] denotes the k-th IMF of 6,[n]. 
In practice] we used in our simulations zero mean unit variance Gaussian white 

noise ~ ~ / ~ [ n ] ,  with E = 0.02 (corresponding to a signal-to-noise ratio (SNR) of 
34 dBl with SNR defined as 10 loglo(l/var{~z1~2[n]})). The data length of each 
realization has been fixed to N = 256, and simulations have been carried out on 
J = 5000 independent realizations. 

3.3.2. Equivalent impulse responses 

The result of the simulation (average EMD for our slightly noisy pulse) is plotted 
in Fig. 3.4. Again, this figure shows a striking resemblance to what we would have 
obtained by using a wavelet analysis, the different averaged IMFs apparently all 
having the same shape for each order k. 

To understand our results, we again seek a self-similar structure which would 
reduce all of the IMFs to one universal waveform thanks to a well-chosen renor- 
malization. Figure 3.5 shows that this reduction is indeed possible. In constructing 
our waveform, we first plotted the maximum amplitude of the different IMFs as a 
function of their index. Doing so allowed us to identify an exponential variation of 
the form: 

d k [ O ]  = 2C-pk1 

where p x 0.85. In the second step, we found that a dilation factor a = 2 P  M 1.80 
gave a superposition of the different waveforms (and their spectra) which we could 
express as 
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time 

Figure 3.4: Impulse response. The EMD equivalent impulse response was obtained by averaging 
each IMF by using a large number of decompositions computed with a slightly noisy pulse. Here, 
5 000 independent realizations from 256 data points were simulated with a signal-to-noise ratio 
of 34 dB. The first frame shows the average pulse and each successive frame corresponds to the 
ensemble average of the first six IMFs normalized in amplitude mode by mode. 

where $(t)  is a reference waveform and analogous to a mother wavelet in a mul- 
tiresolution analysis. For our analysis, the interpolation scheme used in the EMD 
was a cubic spline (see Huang et al. 1998; Rilling et al. 2003; available online at 
http://perso.ens-lyon.fr/patrick.flandrin/emd.html). Note how very similar $(t)  is 
to a cubic spline wavelet (third convolution power of the Haar wavelet). 

3.4. Selected applications 

If we accept that EMD may be characterized in some cases as a “spontaneous” filter 
bank, then several potentially useful applications are immediately suggested. 

3.4.1. EMD-based estimation of scaling exponents 

Our first application concerns the estimation of the Hurst exponent H for fGn based 
on the EMD spectral analysis described in Section 3.2. Given the self-similar relation 
(3.5) for PSDs for band-pass IMFs (index k > l), we can deduce how the variance 
should evolve as a function of k .  Assuming that (3.5) holds for any k’ > k 2 2 and 
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Figure 3.5: Self-similarity. The logarithm of the maximum amplitude of IMFs 2 to  5 in Fig. 3.4 is 
given by a linear function of the IMF index (top left diagram). Renormalizing these IMFs, either 
in time (top right) or in frequency (bottom left), yields an unique curve. The “impulse response” 
is similar to a cubic spline wavelet (bottom right). 

a = 2H - 1, we have 

which leads to 

(3.6) 
VH[k]=CPff  2 ( H - l ) k  . 

The IMF variance should be an exponentially decreasing function of the IMF index 
with a decay rate which is a linear function of the Hurst exponent H .  Experimental 
evidence for this behavior is given in Fig. 3.6 where a semi-log diagram (in base 2 )  
gives the (energy-based) empirical variance estimate 

as a function of the index k .  From a logarithmically linearized version of (3.6), 
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Figure 3.6: Estimated IMF logz-variance in the case of fractional Gaussian noise. The values of 
the empirical (energy-based) variance estimates are given by dotted lines for different values of 
the Hurst exponent H .  The error bars correspond to the standard deviations associated with the 
5 000 realizations run in the study. The mean value of the estimated Hurst exponents is also given, 
based on a weighted linear fit within the IMF indices range k = 2 to 6. For clarity, all curves have 
been arbitrarily shifted along the vertical axis to avoid overlapping. (Originally published in Znt. 
J .  Wavelets Multiresolut. Inform. Process., 2, 477-496, 02004 World Scientific.) 

straight lines may be fitted to the different curves. The slope K H  then gives an 
estimated Hurst exponent I? via 

KH 

2 
H = l + - .  

Figure 3.6 shows that (3.6) holds only for IMF indices k > 1. Furthermore, the error 
increases as H becomes small (typically, the model fits the data reasonably well for 
H > i). 

To better understand our ability to estimate H from the slope of a “log-energy 
vs. IMF index” diagram, one must consider not only the evolution of the variance as 
a function of the modes, but also the possible correlations which may exist within 
and between modes. To this end, we focus on band-pass IMFs (k > 1) and evaluate 
the two-dimensional correlation function+ 

tThe definition of this quantity is based on the implicit assumption that IMFs are, jointly, second- 
order stationary processes. 
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Figure 3.7: Two-dimensional correlation function of the IMF matrix in the case of fractional 
Gaussian noise. For each Hurst exponent H ,  the graph displays the quantity IE)H[]E’, .’]I given by 
(3.9) as a function of time and scale (IMF index lag). 

by using the averaged empirical estimate 

with In’\ 5 N - 1 and Ik’l 5 K - 2. Here, K denotes the largest IMF index minus 1, 
and we have discarded the residual. This two-dimensional correlation function of the 
full IMF matrix is plotted in Fig. 3.7 and shows that modes with different indices 
are essentially uncorrelated. The only significant values of BH [k’, n’] correspond 
to k‘ = 0, i.e., to intra-scale correlations, with a correlation decay which becomes 
slower as H is increased. 

The effects of using our estimate of the Hurst exponent H given by (3.8) and 
the slope KH deduced from (3.7) on (3.9) are twofold. First, because of the non-zero 
intra-scale correlations, the variance estimate VH [k ]  given by (3.7) would experience 
large fluctuations, especially when the Hurst exponents H and IMF indices k are 
large. Second, the negligible inter-scale correlations should allow for an estimate of 
the slope KH from a weighted linear regression from a semi-log diagram of log, VH [k] 
vs. k. Further results from the effective performance of this EMD-based estimator 
of H (and comparisons with wavelet-based approaches) can be found in Flandrin 
and Gonqalvks (2003). 
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Figure 3.8: EMD as a spectrum analyzer. In the case of an AR(4) process, whose pole constellation 
in the upper half unit circle is plotted on the top left diagram, the ensemble averaged spectral 
analysis (over 50 realizations) of the first five IMFs is given in the right column of the figure. 
The bottom frame displays the cumulative spectrum (solid line) obtained by summing up the 
five spectra and compares it to the model's spectrum (dotted line). The bottom left diagram is 
a schematic of the normalized IMF cross-correlation (3.10) with the (unit) diagonal artificially 
forced to be zero so as to mhance the gray scale dynamic range (IMF indices grow from left to 
right and from top to bottom). 

3.4.2. EMD as a data-driven spectrum analyzer 

If one accepts that EMD behaves as a homogeneous filter bank for processes whose 
(full) spectrum varies monotonically, one can further investigate how this method 
decomposes processes with a less regular spectrum. Figure 3.8 shows the prelimi- 
nary results obtained for an auto-regressive (AR) process of order 4. While EMD 
does achieve a filter bank-like decomposition in this case, the interpretation of these 
modes requires some caution. With regard to the first IMF, the selected main fre- 
quency band is fully data-driven and automatically adapted to the highest frequency 
resonance. On the other hand, as noted earlier with regards to the non-negligible 
capture of low frequencies by IMF 1, some contributions at lower frequencies also 
occur. These contributions may include resonances at  lower frequencies; they can 
also correspond to artifacts which must be compensated by IMFs of higher orders. 
These situations may be identified by examining intermodal correlation coefficients: 
The larger the correlation is, the less significant is the splitting into separate compo- 
nents. A quantitative evaluation of this intermodal correlation is plotted in Fig. 3.8, 
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(3.10) 

and 

By definition, we have 0 5 O [ k ,  k’] 5 1. Figure 3.8 clearly shows that the non- 
negligible values (as compared to 1) of O[k ,  Ic’] correspond to index pairs (Ic, k’) for 
which the IMF DSPs have a large amount of frequency overlap. 

3.4.3. Denoising and detrending with EMD 

A detailed knowledge of IMF statistics in situations where noise is present can help 
in gauging the significance of a given mode. This idea, which has been pioneered 
by Wu and Huang (2004), can be used to separate a signal from noise. Two possi- 
ble methods, namely denois ing (by removing those modes identified as noise) and 
detrending (by keeping only them), can be used. 
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Figure 3.10: Relative confidence intervals. The (base 2) logarithm of the relative confidence 
intervals given in Fig. 3.9, i.e., log, (log, ( T H [ k ] / w H [ k ] ) ) ,  behaves essentially linearly as a function 
of the IMF index k ,  suggesting (3.12). For each of the three values of H ,  the crosses (circles) 
correspond to a confidence interval of 95% (99%), the dotted (dashed) lines refer to the cases 
where the reference W [ k ]  is chosen by using the mean (median) of the IMF energies over the 
realizations, and the solid lines indicate the corresponding best linear fit. 

With regards to the variability of the variance estimate, Fig. 3.6 gives a rough, 
second-order indication based on the observed standard deviation. A greater appre- 
ciation can be gained from Fig. 3.9, in which the experimental mean, median and 
various confidence intervals are plotted for H = 0.2, 0.5 and 0.8, as well as 

log2 V H [ ~ ]  = log2 VH[~]  + 2(H - l ) ( k  - 2) log2 p~ (3.11) 

for k 2 2, which was derived from (3.6). This series of simulations (which was carried 
out on 10 000 realizations of 2048 data points in each case) shows increasingly larger 
fluctuations for modes as the indices increase.$ This finding agrees with (and is a 
generalization of) the findings reported in Wu and Huang (2004) for the case of 
white noise. Figure 3.10 also suggests that we may parameterize T H [ ~ ]  by using the 
formula: 

log2 (log2(TH[k]/wH[k])) = aHk + bH , (3.12) 

where W H [ ~ ]  denotes the H-dependent variation of the IMF energy. As noted earlier, 

$The skewed (marginal) distribution of these “modegrams” yields better agreement if the linear 
model (3.12) uses the median rather than the mean of the realizations. 
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Figure 3.11: Denoising and detrending. An example of an amplitude-modulated, low-frequency 
oscillation embedded in fractional Gaussian noise with a Hurst exponent H = 0.3 is plotted in 
(b). The estimated energies of the seven IMFs are plotted in (a) as the thick line, together with 
the "noise only" model (thin line) and the 99% confidence interval (dotted line). The partial 
reconstruction obtained by adding the EMD residual and IMFs 5 to  7 [only those whose energies 
exceed the threshold in (a)] is plotted in (c) as a solid line and is superimposed on the actual signal 
component (dotted line). The partial reconstruction of IMFs 1 to  4 is plotted in (d). 

Table 3.1: Confidence Interval Parameters for the Linear Model (3.12). 

0.2 0.487 0.458 -2.435 0.452 -1.951 
0.5 0.719 0.474 -2.449 0.460 -1.919 
0.8 1.025 0.497 -2.331 0.495 -1.833 

the best linear fit occurs when the median of the IMF's energy is used to compute 
wH[k] over the realizations. The parameters UH and bH can be deduced from the 
simulation results in Fig. 3.9, and their values are reported in Table 3.1. In practice, 
wH[1] can be estimated from 

and subsequent values of w ~ [ k ]  are given by 

(3.13) 

(3.14) 

hhhhh
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Figure 3.12: Denoising and detrending of a heart-rate signal. Top diagram: Signal spectrum in 
log-log coordinates (thin line) with a linear fit of slope p M -0.8 in the mid-frequency range (thick 
line), supporting a fGn model with Hurst exponent H = (1 - p ) / 2  N 0.9. Bottom diagram: Model- 
based detrending. Left: Estimated energy of nine IMFs, plotted as the thick line, together with 
the “noise only” model given by H = 0.9 (thin line) and the 95% confidence interval (dotted line). 
Top right: Original signal. Middle right: Estimated trend obtained from the partial reconstruc- 
tion with IMFs 5 to  9 (only those whose energies exceed the threshold in the left diagram) and 
the residual. Bottom right: Detrended signal obtained from the partial reconstruction with IMFs 
1 to 4. 

where CH = W H [ l ] / P H .  The parameter PH used to compute CH can, in turn, be 
estimated from the data displayed in Fig. 3.9, and its values are given in Table 3.1. 

Given these results, a possible strategy for denoising a signal corrupted by fGn 
(with a known H )  is as follows: 

(1) Assuming that the first IMF captures most of the noise, estimate the noise level 
in the noisy signal by computing I/i/H[1] from (3.13). 
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(2) Estimate the “noise only” model by using (3.13) and (3.14). 
(3) Estimate the corresponding model for a chosen confidence interval from (3.12) 

(4) Compute the EMD of the noisy signal, and compare the IMF energies by using 

(5) Compute a partial reconstruction by keeping only the residual and those IMFs 

and Table 3.1. 

the confidence interval as a threshold. 

whose energy exceeds the threshold. 

An alternative strategy for detrending fGn-type noise process consists of com- 
puting the complementary partial reconstruction based on only those IMFs whose 
energy is below the threshold. 

A simple example of the EMD approach to denoising and detrending is given 
in Fig. 3.11, which presents the case of an oscillatory, low frequency waveform 
embedded in fractional Gaussian noise. A companion example containing actual 
data (heart-rate variability) is given in Fig. 3.12. 

3.5. Concluding remarks 

We have shown that EMD achieves a specific form of hierarchical filtering. This 
result is in agreement with the intuition associated with the EMD principle. How- 
ever, because EMD still lacks a sound theoretical foundation, a careful and detailed 
analysis based on extensive numerical simulations was necessary for asserting and 
quantifying this behavior. In the cases shown here, we observed the %pontaneous” 
emergence of an equivalent filter bank structure which has the advantage of be- 
ing fully data-driven. Furthermore, because it is local in time, this structure can 
adapt automatically to nonstationary situations with greater flexibility than other 
approaches using a pre-determined decomposition scheme. Although some possible 
applications have been outlined, their potential usefulness will require further stud- 
ies that compare EMD to alternative methods for specific tasks while endeavoring 
to make the theory more rigorous. 
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