
CHAPTER 4 

HHT SIFTING AND FILTERING 

Reginald N. Meeson, Jr. 

Time-frequency analysis is the process of determining what frequencies are present 
in a signal, how strong they are, and how they change over time. Understanding 
how the frequencies in a signal change with time can explain much about the 
physical processes that generate or influence the signal. Better resolution of the 
details of frequency changes provides better insight into these underlying physical 
processes. 

The Hilbert-Huang transform (HHT) offers higher frequency resolution and 
more accurate timing of transient and non-stationary signal events than conven- 
tional integral transform techniques. The HHT separates complex signals into 
simpler component signals, each of which has a single, well-defined, time-varying 
frequency. Real-time HHT algorithms enable this enhanced signal analysis capa- 
bility to be used in process monitoring and control applications. 

‘Sifting” is the central signal separation process of the HHT algorithm. This 
chapter compares the component signal separations of Huang’s sifting process 
with those produced by filtering techniques. Although intuition seems to suggest 
that filtering, with appropriate real-time adjustments to parameters, could be 
substituted for Huang’s sifting process, our results did not support this sugges- 
tion. Five case studies present HHT and filtering results for stationary amplitude- 
and frequency-modulated signals, as well as signals with more dynamic transient 
behavior. These examples show that, in general, HHT sifting and filtering sep- 
arate signal components quite differently. Our experiments with example signals 
led to the discovery of aliasing in the HHT sifting algorithm. 

4.1. Introduction 

One way t o  describe a timed series of measurements, referred t o  as a “signal,” is in 
terms of the frequencies in its variations. The  process of determining what frequen- 
cies are present, how strong they are, and how they change over time is called “time- 
frequency analysis.” Conventional time-frequency analysis techniques use integral 
calculus transforms to map time-based signals into frequency-based or joint time- 
and frequency-based representations. Examples of these techniques include Fourier 
transforms, windowed Fourier or Gabor transforms, wavelet transforms, and joint 
time-frequency distributions [see Cohen (1995) for a thorough introduction t o  these 
techniques]. 
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The Hilbert-Huang transform (HHT) is a new time-frequency analysis technique 
that offers higher frequency resolution and more accurate timing of transient and 
non-stationary signal events than conventional Fourier and wavelet transform tech- 
niques. This approach was introduced by Huang (1998). Conventional techniques as- 
sume signals are stationary, a t  least within the time window of observation. Fourier 
analysis assumes further that the signal is harmonic and repeats itself with a pe- 
riod exactly matching the width of the sampling window. These analysis techniques 
are employed widely even though their (theoretically necessary) enabling conditions 
rarely hold for signals of interest. 

In addition, integral transform techniques suffer from an uncertainty problem 
similar, mathematically, to Heisenberg’s uncertainty principle in physics. This un- 
certainty limits their ability to accurately measure timing and frequency at  the 
same time. That is, after a point, higher-resolution frequency measurements can- 
not be achieved without sacrificing timing accuracy, and vice versa. The HHT is 
able to resolve frequencies accurately and time them precisely without this limiting 
uncertainty. 

The original HHT algorithm was formulated as a “batch” computation, in which 
a complete dataset is collected and then processed as a whole. An incremental 
algorithm that transforms evolving input data streams into streams of HHT results 
has also been developed [see Meeson (2002)]. Modern microprocessors and signal 
processing chips offer sufficient performance for this incremental algorithm to be 
used in many real-time applications. For this study the incremental algorithm served 
as a bridge connecting the original HHT algorithm to the incremental filtering 
techniques. 

“Sifting” is the central signal separation process of the HHT algorithm. In the 
seminal work on the HHT, Huang (1998) described sifting informally as analogous to 
an adaptive filtering process, but then developed a different algorithmic procedure 
to separate signal components. This development led us to conjecture that filters, 
with parameters appropriately adjusted in real time, could mimic the HHT sifting 
process. It seemed natural to analyze the results from filtering and to compare them 
with the HHT results. Huang’s original HHT sifting algorithm was the starting point 
for this comparison. The results from the original and incremental HHT algorithms 
are virtually identical for the example signals used in this analysis. 

“Filtering,” for this discussion, means conventional finite impulse response (FIR) 
digital filtering where filter coefficients and cutoff frequencies can be adjusted on 
a sample-by-sample basis. Our experiments with these signal-analysis techniques 
revealed new insights into the mathematical properties of the HHT signal separation 
process and may help refine HHT-processing techniques. 

In section 4.2, we describe the objectives of the HHT signal-separation pro- 
cess and the desired attributes of separated components. Huang’s original empirical 
mode decomposition algorithm, which later became known as the HHT, is described 
in section 4.3. Section 4.4 describes the incremental HHT algorithm and analyzes 
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a special case where an analogy to conventional digital filtering techniques can be 
used. In section 4.5, we describe the shift from special-case static filtering to a gen- 
eral method using dynamically adjustable filters. HHT and filtering results for five 
example signals are compared in section 4.6. Section 4.7 concludes with a summary 
and some directions for future research. 

4.2. Objectives of HHT sifting 

The HHT sifting process separates a signal into a series of amplitude- and frequency- 
modulated component signals in the form 

i 

where ai ( t )  represents the amplitude modulation and cpi(t) denotes the phase func- 
tions that represent the frequency modulation characteristics of each component. 

Numerous possible solutions are available for this separation scheme. One fa- 
miliar solution is the Fourier series, which is made up of constant amplitude and 
constant frequency (linear phase) functions [see, for example, Oppenheim and Shafer 
(1989) for a discussion of the Fourier series]. The solution that the HHT seeks is quite 
different. Rather than trying to represent a signal in terms of predetermined basis 
functions, the HHT tracks and adapts dynamically to transient, non-stationary, and 
nonlinear changes in component frequencies and amplitudes as the signal evolves 
over time. 

Windowed Fourier and wavelet-signal-analysis techniques are also able to track 
slowly changing signal behavior; but, as described above, they suffer from an uncer- 
tainty problem that can limit the accuracy of the frequency (scale for wavelets) and 
timing information they yield. The product of the frequency (scale) variance and 
the timing variance for the results from these techniques has a positive lower bound. 
Consequently, once this limit is reached, increasing the accuracy of frequency mea- 
surements can be achieved only by sacrificing timing accuracy, and vice versa [see 
Cohen (1995) for a discussion of time and frequency uncertainty]. 

Many signals of interest contain short-duration transients that are difficult to an- 
alyze because of this uncertainty limitation. With conventional analysis techniques, 
it is not possible to accurately time when specific frequencies were present. Tran- 
sient events can be timed accurately, but accurate frequency information cannot be 
resolved within that narrow time window. 

HHT signal separations are not subject to this limitation and provide both accu- 
rate frequency and accurate timing simultaneously. HHT has this unique advantage 
over conventional time-frequency analysis techniques. HHT analysis of earthquake 
data, as described by Huang (2001), for example, shows a very different distribu- 
tion of frequencies over time than conventional Fourier analysis. This difference may 
prove tremendously important in analyzing the strength of buildings, bridges, and 
other structures. 
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4.2.1. Restrictions on amplitude and phase functions 

In order to extract the desired amplitude and frequency information, without con- 
flicting interpretations or paradoxical results, restrictions must be imposed on the 
amplitude and phase functions, a i ( t )  and cpi(t). The primary requirement for HHT 
components is that they be sufficiently well behaved to allow extraction of well- 
defined amplitude and phase functions. Such functions are called LLmonocomponent” 
functions, and we distinguish them from lLmulticomponent” functions, from which 
amplitude and phase cannot be cleanly extracted. Although there seems to be no 
generally accepted mathematical definition of “monocomponentness,” there is little 
debate over one primary criteria, which is that at any time a monocomponent sig- 
nal must have a single, well-defined, positive instantaneous frequency represented 
by the derivative of its phase function. 

The first approach suggested for finding the necessary conditions for a separated 
component’s “monocomponentness” was to look at the component’s analytic signal, 
which is given by 

d[c(t)] = c(t) + i‘Fl[c(t)] , 

where c(t) = a ( t )  cos[cp(t)], E( . )  is the Hilbert transform, and i = [see Cohen 
(1995) for a discussion of analytic signals and the Hilbert transform]. The analytic 
signal is a complex function whose Fourier transform is twice that of c(t) over the 
positive frequencies and zero over negative frequencies. The spectrum of this signal, 
therefore, contains only positive frequencies. This fact does not guarantee, however, 
that the signal’s instantaneous frequency (the derivative of its phase) will always 
he positive. Cohen (1995) shows examples of analytic signals that have paradoxical 
instantaneous frequency characteristics, including some with negative instantaneous 
frequencies. The analytic signal, therefore, by itself, does not appear to provide 
sufficient criteria for separating monocomponent signals. 

A second approach suggested for finding monocomponent conditions was to con- 
sider the function’s quadrature model: 

By using the additional knowledge about the Hilbert transform that ‘Fl{cos[cp(t)]} = 

sin[cp(t)], the quadrature model can be compared with the analytic signal. The two 
are the same when the amplitude function can be factored out of the signal’s Hilbert 
transform; i.e., when 

The conditions under which this relationship holds were established by Bedrosian 
(1963) and elaborated by Nuttall (1966). The conditions are, for some positive 
frequency W O :  
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Figure 4.1: Example of a multicomponent signal. 

a. The spectrum of the amplitude function is restricted to frequencies below W O ,  

b. The spectrum of the cosine term is restricted to frequencies above W O .  

and 

An example of a function that does not satisfy these conditions is 

~ ( t )  = 1.25 cos(t) - cos(2t) . 

The analytic signal of this function is similar to one of Cohen’s problematic signals, 
A[s(t)] = 1.25eit - e2it, which cannot be expressed in the form a(t)eiq(t)  without 
either a ( t )  oscillating rapidly or cp’(t) turning negative periodically. As can be seen 
in the graph shown in Fig. 4.1, the real signal s ( t )  has local minima with positive 
values. Such a signal cannot be expressed in the form a ( t )  cos[cp(t)] with a slowly 
varying amplitude and an increasing phase function. If we assume a slowly varying 
amplitude, to satisfy Bedrosian’s first condition, then the cos[cp(t)] term would have 
to turn and go back up again without going negative. The phase function, therefore, 
would have to decrease for a time, resulting in a negative instantaneous frequency. 
This result would violate Bedrosian’s spectral separation conditions, since the am- 
plitude function would have to have a negative upper-frequency limit. If we stipulate 
an increasing phase function, then the amplitude must peak near t = (2n + 1). and 
dip to a minimum near t = 2nr, giving an average frequency of w = 1, the same as 
the average change in phase. Either way, Bedrosian’s condition is not satisfied. 

Bedrosian’s conditions are too restrictive for our needs, however. Purely 
frequency-modulated signals with constant amplitude can have spectra that extend 
down to zero frequency. Any amplitude modulation imposed on such a “carrier” 
signal would violate Bedrosian’s conditions-even though the signal would make a 
perfectly good HHT component. The case studies below show that solutions must 
allow phase functions that exhibit this sort of frequency-modulated behavior. 

Teager’s energy operator, 9, was suggested by Maragos (1993) as a possible 
non-linear approach for restricting amplitude and phase functions for combined 
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amplitude-modulated (AM) and frequency-modulated (FM) signals 

Q(s ( t ) ,  t )  = i s’(t)]2 - s ( t ) s ” ( t ) .  

For component signals of the form a ( t )  cos[cp(t)], P can be expanded as 

~ { u ( t )  cos[cp(t)], t )  = [u(t)cp’(t)l2 + :a2@) sin[2cp(t)]qS’(t) 
+ cos”cp(t)lQ[a(t), tl . 

If a signal has a dominant high-frequency component, the first term in this formula 
will dominate the others. Maragos (1993) describes the secondary terms as “error” 
terms and shows how they can be minimized by constraining the AM and FM 
indexes of modulation, and the modulating signal bandwidth. 

The integrals of the two terms in Teager’s 9 operator are both equal to the 
signal’s total energy times its average square frequency; i.e. , 

[ ~ ’ ( t ) ] ~  d t  = - J 
where S(w) is the signal’s Fourier transform, E is its total energy, 

E = [s(t)12dt = lS(w)I2 dw , J S  
and (w2)  is the average square frequency. 

Instantaneously, though, Teager’s two terms are quite different. P may not even 
yield positive results. For the signal in Fig. 4.1, for example, the values of 9 are 
negative in the vicinity o f t  = 2nn (where s ’ ( t )  < 0, s ( t )  > 0, and s ” ( t )  > 0). 

For lightly modulated signals, P produces a stable output dominated by 
[a(t)p’(t)12. Maragos (1992) showed that, as long as the “error” terms are suffi- 
ciently small, P can be used to demodulate the signal and extract approximate 
values for a ( t )  and cp’(t) by applying P to the signal 

Q”S(t), tl = Q{.(t) cos[cp(t)l, t l  = [a(t)d(t>12 

and to its derivative 

Q [ S ’ ( t ) , t ]  = 2(t)[cp’(t)l4. 

Teager’s formula appears to offer possibilities for identifying signals that would sat- 
isfy our general notion of monocomponentness. Turning these results into algorithms 
for separating monocomponent signals from more complex ones, however, is still an 
open problem. 

We proceed from this point without a concrete definition of “monocompo- 
nentness,” but we recognize that it implies constraints on phase monotonicity 
(p’(t) > 0), amplitude and “carrier” signal bandwidth, and degrees of amplitude 
and frequency modulation. 
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Figure 4.2: Diagram of the HHT signal separation process. 

4.2.2. End-point analysis 

An area of interest to many scientists is the extraction of frequency information 
a t  the very beginning and a t  the very end of the data they collect. We have not 
pursued this problem and are skeptical about prospects for significant advances in 
this area. Cohen (1995) states that the frequency content of a signal at any point in 
time depends entirely on the context of its behavior both before and after the time 
in question. In the absence of data providing this context, assumptions could be 
made about the signal’s probable past and future behavior, but the analysis would 
then merely reflect these assumptions. The primary reason for our interest in time- 
frequency analysis techniques for transient and non-stationary signals is because 
their behavior is unpredictable. We conclude, therefore, that unless the necessary 
assumptions and predictions are strongly supported by additional knowledge about 
the physical processes underlying the signal, end-point analyses should be treated 
as at least somewhat suspect. 

4.3. Huang’s sifting algorithm 

Huang’s sifting process [see Huang (1998)] separates the highest-frequency com- 
ponent embedded in a multicomponent signal from all the lower-frequency com- 
ponents. The remaining lower-frequency components together make up the signal 
trend. A signal can be described in terms of its first component and residual trend 
functions by 

The sifting process for a single component is repeated by using the trend output 
from one stage as the input for the next, producing the series of ai(t)cos[pi(t)] 
terms that add up to reconstruct the original signal, s(t) .  A diagram of this process 
is shown in Fig. 4.2. 

To determine r ( t ) ,  Huang fit smooth envelope curves (using cubic splines) to the 
local maxima of the signal and to the local minima. The average of these two en- 
velopes provides a rough estimate of ~ ( t ) .  (Local maxima are referred to as “positive 
peaks” even though the signal values at those points may be positive or negative. 
Local minima are similarly referred to as ‘(negative peaks.”) Huang then applied 
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an iteration scheme to refine the estimated trend. The iteration scheme can be 
formulated as 

T ( n + l )  ( t )  = T(n) ( t )  + P ( C ( n ) ,  t )  7 

where ~ ( ~ ) ( t )  = s ( t )  - ~ ( ~ ) ( t ) .  The function p represents the spline curve fitting and 
averaging process applied to the peaks of function c ( ~ )  (t) .  (Subscripts in parentheses 
indicate the iteration count.) This calculation is repeated (starting with ~ ( 0 )  ( t )  = 0) 
until a fixed point is reached, and p(c(,), t )  converges to zero (within some small E ) .  

Once the residual or trend function is determined, the difference between it and the 
input signal is the highest-frequency separated component, c i ( t )  = a i ( t )  cos[cpi(t)]. 

To separate the a i ( t )  and cpi(t) functions, Huang computed the component’s 
analytic signal by using Fourier transforms. The Fourier transform of a function’s 
Hilbert transform satisfies the relation 

F{?-t[s(t)]} = -i s i g n ( w ) F [ s ( t ) ]  , 

where F(.) is the Fourier transform and N(.) is the Hilbert transform. The Fourier 
transform of a function’s analytic signal can then be formulated as 

which is zero for all negative frequencies and double the input signal’s values for all 
positive frequencies. 

Taking a separated component’s Fourier transform, zeroing its negative- 
frequency terms and doubling its positive-frequency terms, and then applying the 
inverse Fourier transform, produces the component’s complex analytic signal. The 
magnitude of the analytic signal is a ( t )  and the argument is cp(t). 

Huang called this separation technique “empirical mode decomposition,” and 
the individual component signals “intrinsic mode functions.” His colleagues later 
named the method “the Hilbert-Huang transform.” 

Components separated by this process are well behaved, although, because the 
process is defined only in terms of this algorithm, the mathematical monocom- 
ponentness properties they satisfy are not easily determined. The work described 
below represents an attempt to link the HHT results to filtering, the mathematical 
properties of which are well established. 

4.4. Incremental, real-time HHT sifting 

In Huang’s original HHT algorithm, the data passed between the processing blocks 
in Fig. 4.2 are arrays containing an entire time series. The incremental algorithm 
[see hleeson (2002)] turns these batch-processing blocks into pipeline processes that 
operate incrementally on streams of data, passing one data sample at a time. 

The first step in sifting is to identify signal peaks. The calculation of peak 
values and times in the incremental HHT algorithm is the same as in Huang’s 
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Figure 4.3: Diagram of one iteration of p. 

original algorithm, except that peak value and time pairs, (up ,  tp), are produced 
incrementally as the input stream evolves. The resulting stream of peak values 
corresponds to sampling the input signal at its peak times rather than at  uniform 
intervals. 

Spline interpolation uses global information to calculate the derivative of the 
positive envelope at  each positive peak and for the negative envelope at  each neg- 
ative peak. For incremental processing, only local information is available, so we 
must rely on Hermite interpolation, which is nearly identical to spline interpolation 
but uses derivative values estimated from local signal behavior [see, for example, 
Kincaid (1991) for a thorough discussion of interpolation techniques]. 

By using the spline parameters derived for each segment of the positive peak en- 
velope, values are calculated at  points corresponding to the signal's original sample 
times. This resampling process produces a stream of uniformly sampled envelope 
values, although with some latency from the peak-detection and spline-interpolation 
process. The same process is applied to the negative-peak data. The two resampled 
envelope streams are then averaged to produce a stream of trend values. This pro- 
cess, diagrammed in Fig. 4.3, represents one application of Huang's p function. Each 
stage of this process is performed incrementally, so the calculation of p is achieved 
incrementally. 

4.4.1. Testing for iteration convergence 

The iteration process involving repeated applications of p does not always exhibit 
smooth convergence. Removing the residual or trend component occasionally ex- 
poses new peaks that appeared only as inflections in the input signal. An example 
where these peaks occur is illustrated by the signal 

~ ( t )  = cos(t) - 0 .167~0~(5 t ) .  

The graph of this function is shown in Fig. 4.4. The trend function produced by 
p, also shown in the figure (dashed line), cuts through the inflection points in the 
signal as it crosses the axis and produces new peaks in the next iteration c(t) that 
were not present in the input for this iteration. These new peaks are included in all 
further iterations. 
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Figure 4.4: Example of a signal containing hidden peaks. 

The discovery of new peaks introduces highly nonlinear disturbances in both 
the high-frequency component and the trend that may require several additional 
iterations to smooth out. These disturbances can occur even when the trend has 
nearly converged to a fixed point. 

Huang devised a global test for convergence that spans the entire signal dura- 
tion. This solution, however, is not in keeping with our objective of incremental 
processing. We have not yet found a satisfactory incremental test for convergence. 
In practice we have used fixed-length chains of p operations, making them long 
enough so that errors from terminating the iteration too early are rare. While not 
ideal for real-time performance, the results are comparable to those obtained by 
using the original HHT algorithm. 

4.4.2. Time-warp analysis 

If the peaks of an input signal are uniformly spaced, a number of simplifying as- 
sumptions can be made in the sifting process. These assumptions do not apply 
in general, so this approach cannot be used to process arbitrary signals, but the 
analysis provides insights that can be generalized. 

Disregard, for the moment, the timing information that accompanies the incre- 
mental stream of peak values described above, and assume these peak values have 
been sampled at some uniform rate. The distortion this sampling introduces is re- 
ferred to as a “time warp,” since the actual peak times in general are not uniformly 
spaced. Although all of the nonlinear phase information between peaks in the orig- 
inal signal is lost (for the moment), the trend of the warped signal can be easily 
calculated by using standard low-pass digital filtering techniques. 

In the warped world, one iteration of Huang’s fixed-point function, p, for a series 
of warped peak values u at  time t,, corresponds to the expression 

v UP-3  9vp-1 9VP+l up+3 p(u, tP)  = 3 - - + - +--- 
2 32 32 32 32 

This expression is the average of the two envelopes, one of which is represented by 
up,  and the other is interpolated from the spline curve derived from the neighboring 
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Figure 4.5: Frequency response of HHT trend-estimating process. 

opposite-sign peaks ( ~ ~ - 3 ,  wp- l ,  up+] and up+3) at time tp. This expression corre- 
sponds to a simple low-pass digital filter, which has the frequency response shown 
in Fig. 4.5. This graph shows that the transition band for one pass through this 
filter crosses at approximately one-half of the warped signal’s Nyquist frequency. 

If the timing of peaks does not change from iteration to iteration, multiple it- 
erations correspond to passing the signal through this filter multiple times. (The 
timing of peaks may change slightly, usually in the initial iterations.) Multiple passes 
through a simple filter are equivalent to a single pass through a larger filter [see, 
for example, Parks (1987) for a discussion of filter composition]. Huang’s iteration 
scheme is formulated so that the high-pass filter is iterated and its iteration suc- 
cessively reduces the resulting pass band. The corresponding longer low-pass filters 
have wider pass-band regions and sharper transitions to the stop band. Examples 
of transfer functions for filters representing different iterations of p are shown in 
Fig. 4.5. 

The original HHT algorithm uses the shrinking corrections of the iteration pro- 
cess to judge when it has converged. This method corresponds to choosing the char- 
acteristics of filters dynamically, based on the signal’s behavior. Figure 4.5 shows 
that each iteration of p shifts the filter transfer function to a higher-frequency cutoff 
point. Note also that successive iterations have less and less effect on the size of the 
frequency shift. Rather than iterate the simple filter corresponding to p, we wish to 
determine the filter characteristics necessary to directly satisfy the monocomponent 
criteria and separate the component from the trend in a single pass. 

4.4.3. Calculating warped filter characteristics 

Consider that the separated warped signal can be described by sp = up + rp for all 
positive peaks, and sp = -ap + rp  for all negative peaks, where up is the absolute 
value of the high-pass filter output, and rp is the low-pass filter output for each peak. 
The up values are interpreted as approximating a warped sampling of the amplitude 



86 R. N. Meeson 

1 -  W 

* 0.8 - 
U 
3 = 0.6 - 

a 0 4 -  

c .- 
E 

02 - 

0, 
0 0 1  0 2  03 0 4  0 5  O K  0 7  08 0 9  1 

B/?C 

Figure 4.6: Warped filter transfer functions. 

function] a ( t ) .  The rp  values are similarly interpreted as a warped sampling of the 
residual function, ~ ( t ) .  

The spectrum of the warped residual function is controlled by the low-pass fil- 
tering effects of multiple iterations of p. This same filtering process also controls the 
spectrum of the warped amplitude function. The spectrum of the series of up  values 
is shifted upward by the modulating effects of the warped “carrier” signal, cos(p.). 
The spectrum captured by the high-pass filter, therefore] is that of the amplitude 
function shifted upward by 7r. If R(8) is the low-pass filter transfer function for the 
rp values, then the corresponding transfer function for the ap values is 

A(8) = 1 - R(T - 0 ) .  

This relationship] for an idealized separation filter, is shown in Fig. 4.6. [The transfer 
function for the high-pass filter is shown as C(8).] From these graphs we can see 
that, to satisfy Bedrosian and keep the cos(p7r) and a, spectra from overlapping, 
the stop band breakpoint for the high-pass filter must be no lower than half the 
warped Nyquist frequency. 

Ten iterations of this filter would reduce the effective filter throughput at one-half 
the warped Nyquist frequency to approximately 2 - 1 ° ( ~  lop3)  which should satisfy 
Bedrosian’s separation criteria for many practical purposes. Iterating the simple 
warped filter or substituting a more efficient filter, however, will not adapt to the 
frequency changes introduced by new peaks. In practice] we have often encountered 
signals that require 25 to 30 iterations of Huang’s p operator to converge. Much 
of this disparity in iteration counts is attributable to the nonlinear disturbances 
caused by the discovery of new peaks. 

4.4.4. Separating amplitude and phase 

To separate the amplitude and phase functions incrementally] we substituted a 
Hilbert transform filter for the batch Fourier transform process described earlier 
for calculating analytic signals. A Hilbert transform filter has a transfer function 
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that approximates the Fourier transform of a signal’s Hilbert transform: H(w)  = 
- j s i g n ( w )  [see, for example, Parks (1987) for a discussion of Hilbert transformer 
filter design]. For a monocomponent signal, a( t )  cos[cp(t)] this filter approximates 

h(t)  * {a ( t )  cos[cp(t)l> = a ( t )  sin[cp(t)l 1 

where h(t)  represents the Hilbert transform filter coefficients and “*” represents 
convolution. The amplitude and phase functions are easily separated by using this 
result: 

a( t )  = JW) sin[v(t)lI2 + ( 4 4  cos[cp(t)l>2 ’ 
and 

~ ( t )  = arctan{sin[cp(t)]/ cos[cp(t)]} . 

Once the phase function is extracted] the signal’s instantaneous frequency is cal- 
culated by passing cp(t) through a differentiating filter (after compensating for the 
discontinuities in the arctan results). All of these calculations are done incremen- 
tally. 

The band-limiting effects of warped filtering on the amplitude envelope indicate 
that a ( t )  should be relatively smooth. That is, we expected a ( t )  to look like the 
smooth spline-connected envelopes calculated in the final iteration of p in the sifting 
process, with all of the high-frequency content captured by the phase function] cp(t). 
Both the Hilbert transform filter and the Fourier batch technique] however, were 
found to introduce a high-frequency “ripple” in the amplitude results for some 
signals. 

The explanation for this seeming anomaly is that, within certain limits, the 
spectral energy of a combined amplitude- and frequency-modulated signal can be 
freely exchanged between the amplitude and phase functions. While we expected 
a band-limited amplitude, the Hilbert transform appears to split the difference, 
sharing the high-frequency content between the amplitude and phase functions. 
The result, therefore] is sometimes a bit different from what we expected] but is an 
equivalent representation of the signal. 

We experimented with a number of different possible techniques for separating 
the amplitude and phase, including the use of Teager’s energy operator. None of 
these other techniques were as successful as the use of the Hilbert transform filter. 
Teager’s operator worked well for the signal itself, but occasionally produced nega- 
tive results for the derivative of the signal, spoiling Maragos’s (1992) demodulation 
approach. Boashash (1992) provides an extensive discussion of additional techniques 
for extracting a signal’s instantaneous frequency. 

4.5. Filtering in standard time 

The next objective] to test our conjecture about filtering substituting for HHT 
sifting, was to reproduce the effects of Huang’s p operation in standard time, with- 
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Figure 4.7: Filter transfer functions. 

out resampling the original input signal. In the process, we wanted to avoid the 
unreasonable time-warp analysis assumptions about uniformly spaced peaks. The 
question posed was, Is there a corresponding standard-time filter that will isolate a 
comparable (unwarped) trend function and, if so, what are its characteristics? Any 
filter that approximates this response will have to change its attributes over time 
(possibly every few samples) to track transient and non-stationary changes in the 
signal. 

The transfer function for this low-pass filter is shown schematically in Fig. 4.7 
as R(0) .  The transfer function for the complementary high-pass filter for the 
a ( t )  cos[cp(t)] term is shown as C(0). This filtering should also leave the spectrum 
of the amplitude function as shown by A(0) ,  maintaining Bedrosian’s separation 
from the minimum frequency of the cos[cp(t)] term. All we have to do is determine 
the breakpoint frequencies, w and w/2, for these filters and calibrate the horizontal 
scale. 

The spectrum of the a ( t )  cos[cp(t)] term will, in general, contain both AM and 
FM components. Amplitude modulation of a constant-frequency “carrier” signal 
shifts the spectrum of the amplitude signal from the origin to the carrier frequency. 
If A(0) is the spectrum of a( t ) ,  then the spectrum of a ( t )  cos(w,t) will be A(O + wc), 
where w, is the carrier frequency. Frequency modulation redistributes the spectrum 
of its modulating signal in much more complex ways. 

In a combined AM and FM signal, the FM spectrum overlaps and mixes with 
the AM spectrum so that separating the two components by using a simple linear 
process (like conventional filtering) does not appear promising. The HHT process, 
however, is able to make a separation, although not always in exactly the same form 
as that used to formulate sample inputs. (Recall that solutions satisfying the HHT 
monocomponent separation criteria are not unique.) 

As a first approximation for the breakpoint for the high-pass filter pass band, 
we used the minimum peak-to-peak frequency of the signal over the time span 
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covered by the filter.§ This frequency is marked as w on the axis in Fig. 4.7. The 
pass band breakpoint for the high-pass filter was set to this frequency. The stop 
band breakpoint, based on our experience with warped filtering, was set to one-half 
this frequency. As signals pass through the filter, their peak-to-peak frequencies are 
monitored, and the filter coefficients are adjusted to track any changes. 

4.6. Case studies 

In this section we present five case studies that illustrate and compare the results 
produced by the HHT and filtering approaches. The first example is a simple com- 
posite signal that serves as a reference for comparison with the second example. The 
second example is a steady-state AM signal. The third example is a steady-state FM 
signal. The fourth and fifth examples contain unit step changes in amplitude and 
frequency, respectively, and allow us to begin to explore the dynamic capabilities of 
the HHT and filtering mechanisms. 

4.6.1. Simple reference ezample 

The first example is a simple combination of constant amplitude sinusoids defined 
by 

~ ( t )  = C O S ( ~ )  -t- 0.5 cos(t/2) . 

The graph of this function is shown in Fig. 4.8, along with the signal trend (dotted 
line). The maximum timing between peaks is slightly greater than 7r, indicating the 
need for high- and low-pass filters with upper breakpoint frequencies at w = 0.97. 
The result of filtering this signal, because of our selection of filter breakpoints, pro- 
duces a nearly perfect separation of the two components, namely c l ( t )  = cos(t) 

Figure 4.8: Simple two-component example signal. 

§We note that Bedrosian’s spectral separation criteria, being based on integral transform analysis, 
must hold (theoretically) for all time, not merely for the time span covered by the filter. We conjec- 
ture that this rather severe constraint can be relaxed by using more modern tight-frame analysis 
techniques. We have not completed the analysis to formally confirm this conjecture, however, and 
we proceed, taking it as an assumption. 
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and q ( t )  = 0.5 cos(t/2). The HHT sifting process produces nearly identical results. 
One difference is that HHT sifting approximates the trend using splines, so its trend 
is represented by a series of cubic polynomials pieced together at the peaks. These 
small differences are of little concern here. Our primary interest in this simple signal 
is its similarity to the next example. 

4.6.2. Ampli tude modulated example 

The second example is a stationary amplitude-modulated signal defined by 

s ( t )  = [l + 0.5 C O S ( ~ / ~ ) ]  cos(t) . 

The graph of this function is shown in Fig. 4.9, along with this function’s positive 
and negative envelope (dotted lines). Note that a very similar envelope could also 
be constructed for the previous example. 

The differences between this example and the first one are that the tall positive 
peaks are a little narrower, and the shorter positive peaks are a little broader. The 
positive peaks have exactly the same values and timing. The negative peaks extend 
slightly lower (to -1.03), and their timing is shifted slightly toward the tall positive 
peaks. Another way to examine these signals is to expand this example’s definition 
and apply a trigonometric identity for the product of two cosines: 

~ ( t )  = cos(t) + 0.5 C O S ( ~ / ~ )  C O S ( ~ )  

= cos(t) + 0.25 cos(t/2) + 0.25 ~ 0 ~ ( 3 t / 2 )  . 

The above equations show that the difference between this example and the previous 
one is a smaller coefficient for the cos(t/2) term and an additional higher-frequency 
term, 0.25 cos(3tl2). 

The maximum timing between peaks is again slightly greater than 7r, indicating 
the need for filters with upper breakpoint frequencies at w = 0.93. The result of 
filtering this signal separates the lower-frequency cos(t/2) term from the two higher 
frequency components; i.e., 

C f i l t e r ( t )  = C O S ( ~ )  + 0.25 ~ 0 ~ ( 3 t / 2 )  

Figure 4.9: Example of an amplitude-modulated signal. 
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Figure 4.10: High-frequency component separated from the AM signal by filtering. 
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Figure 4.11: Instantaneous frequency of the AM signal component separated by filtering. 
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Figure 4.12: High-frequency component separated from the AM signal by the HHT sifting 
process. 

and 

rfilter(t) = 0.25 C O S ( ~ / ~ )  . 

The high-frequency component produced by filtering, cfilter(t), is shown in Fig. 4.10, 
along with its amplitude envelope. The instantaneous frequency of the filtering 
solution ranges from approximately 0.83 to 1.10, as shown in Fig. 4.11. 

The result produced by HHT sifting is quite different, as shown in Fig. 4.12. 
The HHT sifting algorithm produces a constant-amplitude, frequency-modulated 
component, and a trend that is the same frequency as the filter trend but twice its 
amplitude. The component’s constant amplitude makes its frequency modulation 
more clearly evident. 
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Figure 4.13: Instantaneous frequency of the AM signal component separated by HHT sifting. 

The HHT-separated component and trend signals can be described mathemati- 
cally by 

C H H T ( t )  = C O S ( ~ )  + 0.25 ~ 0 ~ ( 3 t / 2 )  - 0.25 C O S ( ~ / ~ )  + 0.0563 

and 

~ H H T ( ~ )  = 0.5 cos(t/2) - 0.0563. 

The small constant terms in the HHT formulas offset the frequency modulation 
effects that result when the three cosine terms in C H H T ( ~ )  are combined. These 
effects are discussed in the next example. 

The instantaneous frequency of this signal, shown in Fig. 4.13, has a larger range 
than that for the filter solution. The instantaneous frequency of the HHT sifting 
solution ranges from approximately 0.69 to 1.19. 

Both solutions produce monocomponent high-pass components and band-limited 
trend signals, satisfying the HHT objectives as we characterized them earlier. The 
filter produces a mixed AM and FM component with a smaller-amplitude trend sig- 
nal. HHT sifting produces a purely FM component with larger frequency variations 
and a larger-amplitude trend signal. 

In this example, the HHT result illustrates a classic example of signal aliasing. 
The HHT and warped filtering processes, being based on peak values, which are 
sampled at a frequency of w = 2, under-sample the input signal and misinterpret 
the energy from the higher-frequency cos(3t/2) component and attribute it incor- 
rectly to the lower-frequency cos(t/2) term. The extra cos(t/2) energy in both the 
HHT component and the trend for this signal does not accurately redistribute the 
cos(t/2) energy contained in the input signal. Aliasing often leads to unintended 
consequences, which we believe is the case here. 

4.6.3. Frequency modulated example 

The third example is a stationary frequency-modulated signal defined by 

s ( t )  = cos[t + 0.5 sin@)] 
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Figure 4.14: Example of a frequency-modulated signal. 
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Figure 4.15: Instantaneous frequency of the FM signal component separated by HHT sifting. 

The amplitude of this signal is constant, but its phase increases nonlinearly. The 
graph of this function, shown in Fig. 4.14, shows sharpened positive peaks and 
rounded negative peaks, much like the solutions to Stokes’s equation (although 
these results are not a solution to Stokes’s equation). See Huang (1999) for further 
discussion and analysis of nonlinear wave dynamics. 

HHT analysis of this signal finds evenly spaced constant-valued positive and 
negative peaks. The trend function is a constant zero, and the separated compo- 
nent captures the entire signal. The instantaneous frequency derived from the HHT 
results, as shown in Fig. 4.15, matches our expectations: cp’(t) = 1 + 0.5 cos(t). 

The filtering results are a bit more complicated to explain. The coefficients of 
the Fourier series for a frequency-modulated signal are defined in terms of Bessel 
functions. [See, for example, Lathi (1965) or Schwartz (1990) for details.] If the 
signal is generalized to 

s ( t )  = A cos[w,t + p sin(w,t)] , 
where A denotes the signal’s constant amplitude, wc is its “carrier” frequency, ,B is 
the index of modulation, and w, is the modulating frequency, then the equivalent 
Fourier series is 

s ( t )  = A c cos[(wc + nw,)tI , 
n 

where Jn( . )  is the Bessel function (first kind) of order n. The summation, theoreti- 
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Figure 4.16: High-frequency component separated from the FM signal by filtering. 

cally, ranges over integral values of n from -00 to 00. Bessel function values for small 
values of ,f3, however, are essentially zero for all but a few terms. An approximate 
Fourier series for this signal is 

~ ( t )  M -0.242 + 0.969 C O S ( ~ )  + 0.242 cos(2t) + 0.031 cos(3t) . 

This representation of the signal shows that its nonlinear phase gives it a constant 
“DC” term as well as higher-frequency harmonic components. The filter breakpoint 
frequencies for this signal, determined from the signal’s peak-to-peak timing, were 
w = 1 and w = f. This filter produced the separation 

cfi l ter(t)  = 0.969 cos(t) + 0.242 cos(2t) + 0.031 cos(3t) , 

and 

The results for the high-pass component are shown in Fig. 4.16, along with a smooth 
amplitude envelope connecting the absolute values of the peaks (dashed lines). 

The output from this filter differs from the monocomponent signal we started 
out with, although the basic shape of the input signal is preserved. The oscillating 
amplitude appears problematic, since the input signal contained no amplitude mod- 
ulation. Furthermore, the amplitude oscillations have the same average frequency as 
the signal, which violates Bedrosian’s spectral separation conditions. These ampli- 
tude oscillations appeared because the filtering process removes the constant term 
in the signal’s Fourier series. Our earlier time-warp analysis showed that the am- 
plitude envelope should be band-limited to below one-half of the signal’s “carrier” 
frequency. The observed higher-frequency content, therefore, is an unexpected arti- 
fact that must be attributed to the filtering process. 

Similar nonlinear signal behavior was encountered in the previous (AM) exam- 
ple. The high-frequency component separated by HHT sifting (shown in Fig. 4.12) 
contains alternating narrow and wide positive peaks. This nonlinear phase behavior 
gives this signal a constant term similar to that described here. As these examples 
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Figure 4.17: Instantaneous frequency of the FM signal component separated by filtering. 
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Figure 4.18: Amplitude step example signal. 

show, any signals with nonlinear phase behavior may contain low-frequency energy 
that will produce similar artifacts in filter results. 

The instantaneous frequency derived from the high-pass filter output is shown 
in Fig. 4.17. This signal has a smaller frequency range than the HHT component 
(w = 0.79 to 1.28), and the variations are not purely sinusoidal. 

4.6.4. Ampl i tude  s tep  example 

The preceding examples are all stationary signals that could be handled by static 
filtering techniques (if the frequencies are known in advance). The signal shown 
in Fig. 4.18 begins to exercise the dynamic capabilities of the HHT and filtering 
processes. This signal contains a step discontinuity in its amplitude at time t = 0; 
i.e., 

sin(t) for t 5 0 
2 sin(t) for t 2 0 .  s(t) = 

Both the HHT and filtering processes are expected to smooth out this amplitude 
transition because of limitations on amplitude bandwidth suggested by the mono- 
componentness considerations. The results plotted in Figs. 4.19 and 4.20 verify this 
expectation. The differences in smoothing are a result of the differing filter transfer 
functions and, in the case of the HHT, its signal aliasing behavior. The trend signals 



96 R. N .  Meeson 

- 2 5 J  

Figure 4.19: HHT component and trend results for the amplitude step signal. 
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Figure 4.20: Filter high- and low-pass results for the amplitude step signal. 

in both cases are shaped somewhat like sampling functions. The HHT trend has a 
considerably higher amplitude than the filter low-pass signal. 

There is also a time delay of approximately 24 time units for the incremental 
HHT result and 25 time units for the filtering results. These delays are necessary to 
collect data on the signal’s future behavior, which both processes need before they 
can produce their results. 

The instantaneous frequencies, derived numerically, for the two separated high- 
pass components are shown in Figs. 4.21 and 4.22. In both cases, the effect of 
smoothing out the amplitude step transient has created transient frequency mod- 
ulations. This result suggests the presence of a “conservation of transient energy” 
law that allows amplitude transients to be transformed into frequency transients. 

Although our understanding of this frequency behavior is incomplete, we can 
explain the behavior of the two signal separation processes by using their represen- 
tation in the frequency domain. The Fourier transform of the amplitude step signal 
is 

S(w)  = 37ri[S(w + 1) - S(w - 1)] /2  + 1/(1 - d) , 
where S(.) denotes the Dirac delta function. Figure 4.23 shows the magnitude of 
this transform. It has complex poles at w = f l ,  which reflect the sin(t) term in the 
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Figure 4.21: Instantaneous frequency of the amplitude step component separated by HHT sifting. 
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Figure 4.22: Instantaneous frequency of the amplitude step component separated by filtering. 
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Figure 4.23: Fourier transform (magnitude) of the amplitude step signal. 

signal. The bandwidth contributed by the amplitude step is distributed smoothly 
over the entire frequency spectrum. 

Figure 4.24 shows how filtering separates the amplitude step signal in the fre- 
quency domain. The low-pass (solid) curve shows the spectrum of the signal trend 
and the high-pass results (dashed) curve shows the spectrum of the separated com- 
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Figure 4.24: Filter high- and low-pass spectra for the amplitude step signal. 
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Figure 4.25: Spectra of the HHT trend and separated component for the amplitude step signal. 

ponent. Inverting these transforms back into the time domain reproduces the trend 
and component signals shown in Fig. 4.20.T 

In practice, the results shown back in Fig. 4.20 are produced by direct convo- 
lution of the signal with the digital filter coefficients, not by applying transforms. 
The results, however, are the same by using either process. 

An explanation of the HHT results requires introducing the effects of the peak 
curve-fitting and iteration process. Figure 4.25 shows the spectra of the signals 
separated by the HHT algorithm. The low-frequency “hump” (solid line) is the 

TCare must be taken with numerical Fast Fourier Transform (FFT) tools when analyzing these 
signals and spectra. The results presented here are for continuous infinite-integral transforms of 
one-time transient events. Numerical techniques that operate on finiteduration numerical repre- 
sentations of signals and their spectra can easily generate different results. For example, a finite 
representation of the signal shown in Fig. 4.18 will be presumed to repeat periodically. While the 
graph still looks like a onetime unit step amplitude change, the transform produced will be for a 
repeating squarewave modulated signal. 
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Figure 4.26: Frequency shift example signal. 

trend’s spectrum. The second curve (dashed line) is the spectrum of the separated 
high-frequency component. Transforming these spectra back into the time domain 
reproduces the signal trend and separated component shown in Fig. 4.19. 

The third curve in Fig. 4.25 (dotted line) shows the apparent spectrum of the 
signal that was derived by resampling it at its peaks. This result is a direct effect 
of aliasing. Because the peak sampling rate is below the signal’s original sampling 
rate, aliasing creates overlapping replicas of the spectrum shown in Fig. 4.23. The 
results shown in Fig. 4.25 reveal that aliasing has a significant effect on the signal’s 
apparent spectrum, causing the HHT algorithm to attribute considerable energy 
to the trend that is not part of the input signal. The separated high-frequency 
component is calculated by resampling the trend at its original sample times and 
subtracting that result from the original input signal. Only the trend, therefore, is 
directly affected by the aliased spectrum. 

4.6.5. Frequency shij3 example 

The final example signal to be explored contains a step discontinuity in frequency 
at time t = 0, given by 

sin(t) for t 5 0 { sin(%) for t 2 0. s(t) = 

A graph of this signal is shown in Fig. 4.26. Because the signal amplitude is con- 
stant, the HHT trend remains constant (zero) through this frequency shift. The 
aliasing has no effect because the trend is zero. The first separated HHT compo- 
nent captures the entire input signal. It seems clear from this example and the earlier 
frequency-modulated example that the HHT will separate any constant-amplitude, 
monotonically-increasing phase signal as a single component. 

The instantaneous frequency extracted from the signal, which is the HHT- 
separated component, is shown in Fig. 4.27. It tracks the signal nearly perfectly 
through the transition. While the HHT produced considerable smoothing of the 
amplitude step in the previous example, it makes no attempt to smooth out the 
frequency shift here. 
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Figure 4.28: Filter high- and low-pass results for the frequency shift signal. 
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Figure 4.29: Instantaneous frequency of the frequency shift component separated by filtering. 

Filtering produces quite different results, as shown in Fig. 4.28. The high-pass 
signal (solid line) shows a clear disturbance, although it is difficult to characterize. 
The low-pass signal (central dotted line) looks something like an inverted sampling 
function, centered at the point where the frequency shift takes place. The ampli- 
tude envelope around the high-frequency signal (upper and lower dotted lines) also 
reflects the disturbance. 
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Figure 4.31: Filter high- and low-pass spectra for the amplitude shift signal. 

The instantaneous frequency, derived numerically, for the high-pass component 
signal is shown in Fig. 4.29. We do not fully understand why the frequency behavior 
should take this shape. 

As with the previous example, we turn to the frequency domain to explain the 
behavior of the filter. The Fourier transform of the frequency step signal is 

S(w) = 7ri[S(w + 1> - S(w - 1)]/2 + 7r i [S (W + 2) - S(w - 2)]/2 
-l/(l - w2) + 2/(4 - w 2 ) .  

The magnitude of this transform is shown in Fig. 4.30. The complex poles at 
w = f l  and w = f 2  reflect the signal’s two sinusoidal frequencies. The band- 
width contributed by the frequency transition is distributed smoothly over the entire 
spectrum. 

Figure 4.31 shows how filtering separates the frequency shift signal in the fre- 
quency domain. The low-pass curve (solid line) shows the spectrum of the signal 
trend. The high-pass curve (dashed line) shows the spectrum of the separated com- 
ponent. Inverting these transforms reconstructs the signals shown in Fig. 4.28. The 
results shown in Fig. 4.28, however, were calculated by direct convolution of the 
signal with the digital filter coefficients, not by applying transforms. 
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Because the filter breakpoint frequencies are determined by the lowest peak-to- 
peak frequency within the span of the filter, these results are effectively the same as 
for static filters with breakpoints at w = and w = 1. Once the last low-frequency 
peak passes through the filter, its coefficients are adjusted to move the breakpoint 
frequencies to w = 1 and w = 2. This adjustment has no effect on the filter outputs 
because, in both cases, the signal resides completely within the high-pass pass band. 

4.7. Summary and conclusions 

In this chapter, the HHT component separation, or “sifting,” process has been 
compared with a filtering process that was intended to mimic HHT behavior. The 
conjecture that conventional digital filters, by adapting dynamically to signal fre- 
quency content, could substitute for the HHT process was found to be incorrect. 
The results from several example signals showed that under most conditions, the 
two techniques produce distinct results. 

The experiments we conducted to compare the HHT and filtering processes led 
to the discovery of aliasing in the HHT sifting algorithm. The process of sampling 
a signal at its peak times results in a classic example of under-sampling that leads 
to misinterpretation of signal frequency content. Specifically, signal content at fre- 
quencies above the peak-to-peak sampling rate’is misinterpreted as lower-frequency 
content. 

The question of whether aliasing is a problem or a “feature” in terms of HHT 
signal separations has not yet been completely resolved. High-frequency components 
separated from examples where aliasing arises appear to satisfy the requirements 
for “monocomponentness,” so they are expected to have well-defined instantaneous 
frequencies. Where aliasing arises, however, it introduces anomalous energy into 
both the high-frequency component and the trend, and this result can be considered 
a form of signal corruption. Further investigation is needed to determine if unaliased 
filtering results are indeed “better,” or if the aliasing is in some unusual way a 
necessary aspect of the HHT sifting process. 

4.7.1. Summary of case s t u d y  f i n d i n g s  

For signals with a dominant highest frequency (case study #l), the HHT and fil- 
tering were found to produce equivalent separations. 

For stationary amplitude-modulated signals with a dominant central “carrier” 
frequency (case study #2), filtering separates the lower sidebands as the trend, 
and the carrier and upper sidebands as the high-frequency component. The HHT, 
because of aliasing, misinterprets the upper sideband energy as lower-frequency 
energy, effectively doubling the lower sideband amplitude. This result gives the 
high-frequency component a nearly constant amplitude and larger variations in 
instantaneous frequency. 

For signals with transient amplitude changes (case study #4), HHT sifting pro- 
duced a broad smoothing of the amplitude transition and, because of aliasing, a 
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large trend amplitude. Filtering also smoothed out the amplitude transition, but 
not as broadly as the HHT. Its trend amplitude was small compared to that of the 
HHT trend. 

For frequency-modulated signals with monotonically increasing phase (case stud- 
ies #3 and #5), the HHT high-frequency component captures the entire signal, 
leaving a zero-valued residual trend. The extracted phase function, cp(t), and instan- 
taneous frequency, cp’(t), for these signals tracked the signal behavior very closely, 
even with significant transients in frequency (case study #5) .  Filtering had consid- 
erably more difficulty with FM signals. Signals with nonlinear phase functions often 
have significant low-frequency content. Conventional filtering separates the high- 
and low-frequency energy, disrupting the input signal’s monocomponent character- 
istics. 

4.7.2. Research directions 

Although this paper investigated a key step in separating signal components, addi- 
tional aspects of the overall problem need attention. The following research areas 
have been identified as areas still to be explored. 

Resolving the question about aliasing is of high priority. Our preference for a 
solution would be an algorithm that separates complex signals into components 
without aliasing, and without the amplitude disturbances filtering causes with FM 
signals. 

Second on our list is finding a better way to separate amplitude and phase 
information from monocomponent signals. Although the Hilbert transform is the 
obvious theoretical solution, the finite numerical approximations we used produced 
anomalous results. 

Episodes of signals with only very low-frequency content compared to their sam- 
pling rate (that is, with many samples between peaks) would require excessively long 
filters to achieve the separations we propose. To process such signals, a method is 
needed for adaptively down-sampling or decimating the signal and for automati- 
cally restoring higher sampling rates when higher-frequency content returns. Static 
down-sampling is used extensively in wavelet transform processing [see, for exam- 
ple, Daubechies (1992)l. To our knowledge, the idea of a dynamic down-sampling 
mechanism has not been explored. 

The residual trend signals that are passed to successive stages of sifting have 
their high-frequency content removed, resulting in signals with lower and lower 
frequency content. This result is a prime example of where signal down sampling 
is needed. Non-uniform sampling techniques may be useful here, although they 
appear to require more complex up-sampling procedures to restore their original 
sampling rates than do uniformly sampled signals [see Aldroubi (2001) for examples 
of possible techniques]. 

Real-world signals often contain components that turn on and off intermittently, 
like the telephone that rings while we are listening to our favorite music or are eat- 
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ing dinner. Huang (1999) developed a technique for dealing with such intermittent 
components that attempts to minimize the disturbance in analysis of more contin- 
uous “backgroundll components. Although a clear need exists for this capability, it 
has not yet been addressed in our real-time algorithms. 

References 

Aldroubi, A., and K. Grochenig, 2001: Nonuniform sampling and reconstruction in 

Bedrosian, E., 1963: A product theorem for Hilbert transforms. Proc. IEEE, 51, 

Boashash, B., 1992: Estimating and interpreting the instantaneous frequency of a 

Cohen, L., 1995: Time-Frequency Analysis. Prentice Hall, 299 pp. 
Daubechies, I. , 1992: Ten Lectures on Wavelets. CBMS-NSF Series in Applied 

Mathematics, Vol. 61, SIAM, 357 pp. 
Huang, N. E., Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, 

C. C. Tung, and H. H. Liu, 1998: The empirical mode decomposition and the 
Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. 
R. SOC. London, Ser. A,  454, 903-995. 

Huang, N. E., Z. Shen, and S. R. Long, 1999: A new view of nonlinear water waves: 
The Hilbert spectrum. Annu. Rev. Fluid Mech., 31, 417-457. 

Huang, N. E., C. C. Chern, K. Huang, L. W. Salvino, S. R. Long, and K. K. 
Fan, 2001: A new spectral representation for earthquake data: Hilbert spectral 
analysis of station TCU129, Chi-Chi, Taiwan, 21 September 1999. Bull. Seism. 
SOC. Am., 91, 1310-1338. 

Kincade, D., and W. Cheney, 1991: Numerical Analysis. Brooks/Cole Publ., 690 
PP. 

Lathi, B. P., 1965: Signals, Systems and Communication. John Wiley & Sons, 
607 pp. 

Maragos, P., J .  F. Kaiser, and T. F. Quatieri, 1992: On separating amplitude 
from frequency modulations using energy operators. Preprints, Intl. Conf. on 
Acoust., Speech, and Signal Process., San Francisco, CA, IEEE, Vol. 2, 1-4. 

Maragos, P., J. F. Kaiser, and T. F. Quatieri, 1993: On amplitude and frequency 
demodulation using energy operators. IEEE Trans. Signal Process., 41, 1532- 
1550. 

Meeson, R. , 2002: An Incremental, Real-Time Algorithm for the Hilbert Huang 
Transform. IDA Paper P-3656, Institute for Defense Analyses, 44 pp. 

Nuttall, A. H., 1966: On the quadrature approximation to the Hilbert transform of 
modulated signals. Proc. IEEE, 54, 1458-1459. 

Oppenheim, A., and R. Schafer, 1989: Discrete-Time Signal Processing. Prentice 
Hall, 879 pp. 

shift-invariant spaces. SIAM Review, 43, 585-620. 

868-869. 

signal. Proc. IEEE, 80, 520-568. 



H H T  Sifting and Filtering 105 

Parks, T. W., and C. S. Burrus, 1987: Digital Filter Design. John Wiley & Sons, 

Schwartz, M., 1990: Information Transmission, Modulation, and Noise. McGraw- 
342 pp. 

Hill, 742 pp. 

Reginald N .  Meeson, Jr. 
Institute for Defense Analyses, 4850 Mark Center Drive, Alexandria, VA 22311- 
1882, USA 
meeson@ida. org 




