
CHAPTER 5 

STATISTICAL SIGNIFICANCE TEST 
OF INTRINSIC MODE FUNCTIONS 

Zhaohua Wu and Norden E. Huang 

One of the preliminary tasks when analyzing a dataset is to determine whether 
it or its components contain useful information. The task is essentially a binary 
hypothesis testing problem in which a null hypothesis of pure noise is often pre- 
proposed. To test against the null hypothesis, the characteristics of noise need 
to be understood first, and often, these characteristics pertain to the analysis 
method used. 

In this paper, the characteristics of Gaussian white noise are studied by using 
the empirical mode decomposition (EMD) method. Statistical testing methods for 
Gaussian white noise for the intrinsic mode functions (IMFs) are designed based 
on the characteristics of Gaussian white noise by using EMD. These methods are 
applied to well-studied geophysical datasets to demonstrate the method’s validity 
and effectiveness. 

5.1. Introduction 

The word “noise” can possibly be traced back to the Latin word “nausea,” “seasick- 
ness, feeling of sickness.” In the scientific community, “noise” refers to a disturbance, 
especially a random and persistent disturbance that obscures or reduces the clarity 
of a signal. The causes of noise are numerous. In radar, noise is often caused by am- 
bient radiation and the receiver’s electronics. In a digital communication system, 
the signal is usually distorted due to limited channel bandwidth and is corrupted 
by addictive channel noise. In nature, noise can be generated by local and intermit- 
tent instabilities, irresolvable sub-grid phenomena, some concurrent phenomena in 
the environment where investigations are being conducted, and by the sensors and 
recording systems. As a result, when we are dealing with data, we are inevitably 
dealing with an amalgamation of signal and noise, 

x ( t )  = s ( t )  + n(t) , 
where x ( t )  denotes the data, and s ( t )  and n(t) are the signal and noise, respectively. 

The detection of the information content of a noisy dataset is fundamental to 
decision making and information extraction. Usually, the extraction of information 
requires a knowledge of the characteristics of both the signal and the noise. When 
the processes that generate the dataset are linear, and the noise in the data has 
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distinct characteristics from those of the true signal, effective filters can be designed 
based on the characteristics of the signal and the noise to separate a dataset’s signal 
from the noise. However, such cases are relatively rare since knowledge of the signal 
in a noisy dataset is limited prior to the analysis of the data. The problem can 
be more complicated if the signal is nonlinear and nonstationary, and the data is 
of limited size. In such cases, a short piece of pure noise data may behave like a 
signal, and therefore, all the possible behaviors of a short piece of noise should be 
considered. Under such circumstances, a less ambitious goal is often set to decide 
whether a noisy dataset has any signals. The latter is often a binary hypothesis 
testing problem associated with a null hypothesis that assumes the dataset contains 
only noise. Under such a hypothesis, the characteristics of noise can be used as a 
reference for discriminating the data (or their components) from pure noise without 
having any pre-knowledge of the signal. Furthermore, knowing the characteristics of 
the noise is an essential first step before one can attach any significance to the signal 
eventually extracted from the data. The characteristics of noise are usually related 
closely to the analysis methods used to examine the noise. For example, white 
noise in the temporal domain is characterized by the independence among any data 
points with a zero autocorrelation, whereas in the Fourier frequency domain by a 
flat Fourier spectra. 

Many time-series-analysis methods are currently available for use. When the pro- 
cesses generating the data are linear, and the noises have distinct time or frequency 
scales different from those of the true signal, these analysis methods may have some 
capability of distinguishing the data from noise. However, most of these methods 
suffer more or less from various drawbacks even in linear and stationary cases. For 
example, even if the real signal and the noises have distinct fundamental frequen- 
cies, their harmonics can still mix with the noise during a Fourier spectrum analysis. 
This mixing of the harmonics with noise will make the Fourier spectrum analysis an 
ineffective noise-discriminating method. The problem could be even worse when the 
time series to be analyzed is both nonlinear and non-stationary. Therefore, more 
effective methods, as well as an understanding of the characteristics of noise per- 
taining to these methods, are needed so that the signal content of real data can be 
estimated. 

In recent years, a new method, entitled empirical mode decomposition (EMD), 
has been developed (Huang et al. 1998; Huang et al. 1999; Huang et al. 2003) and 
has been applied to various fields of scientific research and industry. In this book, 
the method is introduced and many new applications are illustrated. EMD is an 
adaptive method to decompose any time series into a set of intrinsic mode function 
(IMF) components, which become the basis for representing the data. Because the 
basis is adaptive and locally determined, it usually offers a more physically mean- 
ingful representation of the underlying processes. Due to the adaptive nature of the 
basis, harmonics are not needed; therefore, EMD is ideally suited for analyzing data 
generated by nonlinear, non-stationary processes. 
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In this chapter, we will examine the characteristics of Gaussian white noise by 
using EMD and then design statistical test methods to distinguish the IMFs of real 
data from those of Gaussian white noise. The characteristics of uniform white noise 
revealed by using EMD have already been reported (Wu and Huang 2004). Some 
characteristics of white noise described in Wu and Huang and in this chapter can 
also be found in a study by Flandrin et al. (2004) and a chapter by Flandrin et al. 
in this book. We will show that if we know the characteristics of the noise, we can 
offer some measure of the information content of signals buried under data with an 
unknown noise level. 

In this chapter, we will demonstrate that Gaussian white noise has almost iden- 
tical characteristics to those of uniform white noise, which we have already reported 
(Wu and Huang 2004): (1) the EMD is an effective dyadic filter capable of sepa- 
rating white noise into IMFs having mean periods exactly twice the value of the 
previous one; (2) the IMFs are all normally distributed; and (3) the Fourier spectra 
of the IMF components are identical in shape and cover the same area on a semi- 
logarithmic period scale. These results are useful for determining the relationship 
between the product of the mean energy density of an IMF and its corresponding 
mean period and also the spread function of the energy density. The characteris- 
tics and the derived relationships are verified by using the Monte-Carlo method, 
which analyzes a large synthetically generated Gaussian white noise dataset. These 
quantities also provide the necessary information for us to design a statistical sig- 
nificance test method by using the bounds for the energy density spread func- 
tion of the IMFs of Gaussian white noise. Some well-known climate time series 
are used to illustrate the effectiveness of the methodology of assigning statistical 
significance. 

The chapter is arranged as follows: Section 5.2 will present the numerical ex- 
periment and the empirical relationship between the energy density and the mean 
period. Section 5.3 will focus on the empirical result of normally distributed IMF 
components, and the energy spread function derived. Section 5.4 will discuss the sta- 
tistical significance test method and illustrate its validity by applying the method 
to some well-known climate time series and to the series defined using climate 
system model outputs. A discussion and some conclusions will be presented in 
section 5.5. 

5.2. Characteristics of Gaussian white noise in EMD 

This section is on the statistical characteristics of the IMF components of the Gaus- 
sian white noise. These characteristics are derived by numerically studying a lengthy 
Gaussian white noise of 220 data points generated by using a method described by 
Press at al. (1992). We are forced to use numerical methods since EMD is an algo- 
rithm, and the IMFs have no analytical expression. The empirical results presented 
below are not sensitive to the random number generators. 
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IMFs 
number of maxima 

Mean Period 
(counting extrema) 

Mean Period 
(Spec.-weighted) 

Table 5.1: The mean periods of IMFs. Each column corresponds to an IMF. The 
second row is the number of maxima; the third row is the mean period calculated 
from the number of maxima; and the fourth row is the Fourier spectrum weighted 
mean period [see (5.8)]. 

1 2 3 4 5 
365358 173012 86247 43152 21701 

2.870 6.061 12.16 24.30 50.65 

3.467 5.405 9.841 18.61 35.45 

5.2.1 

IMFs 
number of maxima 

Mean Period 
(counting extrema) 

Mean Period 
(Spec.-weighted) 

6 7 8 9 
10843 5429 2717 1345 

96.71 193.1 385.9 779.6 

67.81 133.7 259.4 492.4 

Numerical experiment 

The Gaussian white noise data generated are decomposed into IMFs by using the 
EMD method. An IMF is any function having symmetric envelopes defined by the 
local maxima and minima separately, and also having the same number of zero- 
crossing and extrema. Practically, an IMF is extracted through a sifting process 
which stops when a certain criterion is satisfied. In this study, a Cauchy-type stop- 
page criterion modified from that in Huang et al. (1998) is used; i.e., 

where N is the length of data being decomposed and hn,k is the lcth sifting result 
for nth IMF. This modification essentially eliminates the unstable jump of the value 
of the traditional Cauchy-type stoppage criterion defined in Huang et al. (1998) in 
the sifting process and is consistent with the stoppage criterion of the repetitiveness 
of the number of extrema described in Huang et al. (2003). In the experiment, the 
number of the iteration of the sifting process for each IMF is between seven and 
ten. 

5.2.2. Mean  periods of IMFs  

Based on the definition of an IMF, we can determine the mean period of an IMF 
by counting the number of local maxima of the function. The results of the mean 
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periods are listed in Table 5.1. In this table, the second row is the total number 
of local maxima, the peaks of each IMF in 2" data points. The third row is the 
extrema-counting mean period measured in terms of the number of data points (2" 
divided by total number of maxima of an IMF). The fourth row is the spectrum 
weighed mean period of an IMF, as defined by (5.8) later. (The spectrum-weighted 
mean period of an IMF is smaller than the corresponding extrema-counting mean 
period defined. We will further discuss the issue in section 5.3.) The mean period of 
the nth IMF of Gaussian white noise based on extrema counting is slightly larger 
than that of the nth IMF of uniformly distributed white noise, which we have 
already reported on (Wu and Huang 2004). However, the mean period doubling 
property remains since EMD serves as a dyadic filter, consistent with the results 
obtained by Flandrin et al. (2004). 

5.2.3. The Fourier spectra of IMFs  

Another characteristic that we are interested in is the detailed distribution of the 
energy density of an IMF in terms of the Fourier spectrum as a function of its period 
(the inverse of frequency). The derivation here follows what is described in Wu and 
Huang (2004), which provides more details. Since the IMFs are nearly orthogonal 
to each other, we have the total energy for the data f j  for j = 1 , 2 , .  . . , N ,  to a high 
degree of approximation, as 

N N 

In (5.3), 

is the Fourier transform of data f j ,  and 

is the energy density of the nth IMF, where i = &i, IFkI is the norm of Fk, and 
C n ( j )  is the nth IMF. The expected Fourier spectrum of a white noise time series 
is a constant, indicating that the contribution to the total spectrum energy comes 
from each Fourier component uniformly and equally. (For a synthetically generated 
white noise time series of short length, however, its Fourier spectrum may be a 
constant superimposed on by many spikes. The spikes of the Fourier spectrum of 
an individual copy will be smoothed out when the Fourier spectra of many copies 
of white noise series of the same length are averaged, and the average of the Fourier 
spectra approaches a constant.) The Fourier spectra for the IMFs, however, will not 
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Enemv of IMFs as a Function of Period 

I" 1 

Figure 5.2: The relation between the energy density and the spectrum-weighted mean period. 
The black dots are the energy density as a function of the spectrum-weighted mean period for 
IMFs 1-9 based on the Fourier spectra displayed in Fig. 5.1. The black straight line from upper 
left to lower right is the theoretical line corresponding to (5.7). 

Gaussian white noise series that 

where 

is the spectrum-weighted mean period of nth IMF as N + 00. The simple relation 
in (5.7) has already been stated in Wu et al. (2001). 

The verification of (5.9) is given in Fig. 5.2, where the spectrum-weighted mean 
periods for IMFs 1-9 are calculated based on the averaged Fourier spectra of the 
corresponding IMFs displayed in Fig. 5.1. The straight black line from the upper 
left to the lower right is the expectation line derived from (5.9). Clearly, (5.9) offers 
an excellent fit to these scattered points. 

5.2.4. Probability distributions of IMFs and their energy 

In this subsection, we will examine the probability density functions of IMFs and 
their corresponding energy. Before we present the results, we re-examine the math- 
ematical meanings of IMFs. To achieve this goal, we rewrite part of (5.3) as 

n m m+l 
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where Rm(j) is the remainder of fj after m number of IMFs are extracted. It is 
easy to recognize that 

& ( j )  = Ci+l(j) + Ri+l(j). (5.10) 

Since Ci+l(j) is purely oscillatory with respect to Ri+l(j), we can consider Ri+l(j) 
as the local mean of Ri(j). Similarly, Ri(j) is the local mean of Ri-l(j) and so 
forth, so that & ( j )  is the local mean of Rl(j ) .  Therefore, Ri+l(j) can also be 
considered as the local mean of fj over a local timescale that is approximately the 
local period of Ci+l(j). Since the local period of Ci+l(j) is concentrated near the 
extrema-counting mean period of Ci+l ( j ) ,  to a good approximation, the distribution 
of Ri+l(j) is close to the distribution of the running mean of fj over the extrema- 
counting mean period of Ri(j). 

Two major theorems in statistics (Paploulis, 1986) can then be applied to infer 
the distribution of Ci+l (j). The first one is the central limit theorem, which states 
that the mean over a given finite number of random samples from a distribution with 
finite variance results in a normal distribution. Therefore, Ri(j)  and Ri+l(j) are 
both approximately normal distributions. The second theorem states that the linear 
combination of two normal distributions results in another normal distribution. 
Therefore, we can infer that all IMFs of Gaussian white noise are approximately 
normally distributed. 

Figure 5.3 plots the probability distribution of each IMF for a sample of 50 000 
data points. The results are consistent with the discussion we presented above. 
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Figure 5.3: The histograms of IMFs (modes) 2-9 for a white noise sample with 50 000 data points. 
The superimposed black lines are the Gaussian fitting for each IMF. 
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Figure 5.4: The histograms of the energy density for IMFs (modes) 2-9 for 1024 white noises 
samples of 1024 data points each. The superimposed black lines are the chi-square fitting for each 
IMF. 

Indeed, the deviation from the normal distribution function grows as the mode 
number increases because in the higher modes, the IMFs contain a small number 
of oscillations; therefore, the number of events decrease, and the distribution be- 
comes less smooth. When a sample of longer length is used, the IMFs of the higher 
modes will have more oscillations, and the distribution will converge to a normal 
distribution according to the central limit theorem. 

According to  the theory of probability density function, for a time series that 
has a normal distribution, its energy defined by ( 5 . 5 )  should have a chi-square 
distribution with the degrees of freedom of the chi-square distribution equal to the 
mean of the energy. 

To determine the exact number of degrees of freedom for the chi-square distri- 
bution of IMFs decomposed from a white noise series of length N ,  we can argue 
as follows: we use the Fourier spectrum of a white noise series of the same length, 
N .  For such a white noise series, its number of degrees of freedom is N ,  and that 
number is an invariant when the data are mapped into another space. The decom- 
position of such a white noise series in terms of Fourier components results in N 
Fourier components which form a complete set. Each component has a unit degree 
of freedom; therefore, the number of degrees of freedom of an IMF is essentially the 
sum of the Fourier components it contains. As the energy in a white noise series 
is evenly distributed to each Fourier components, we propose that the fraction of 
energy contained in an IMF is the same as the fraction of the number of degrees of 
freedom. For a normalized white noise time series with unit total energy, the number 








