
CHAPTER 6 

THE APPLICATION OF HILBERT-HUANG TRANSFORMS 
TO METEOROLOGICAL DATASETS11 

Dean G. Duffy 

Recently a new spectral technique has been developed for the analysis of aperi- 
odic signals from nonlinear systems - the Hilbert-Huang transform. It is shown 
how this transform can be used to discover synoptic and climatic features: For 
sea level data, the transforms capture the oceanic tides as well as variations in 
precipitation patterns. In the case of solar radiation, variations in the diurnal and 
seasonal cycles are observed. Finally, from barographic data, the Hilbert-Huang 
transform reveals the passage of extratropical cyclones, fronts, and troughs. Thus, 
this technique can detect signals on synoptic to interannual time scales. 

6.1. Introduction 

For generations researchers have used Fourier analysis to analyze signals. Because 
both the signal and its Fourier transform are important in understanding most 
processes, contour plots of the signal energy as functions of time and frequency 
(temporal-frequency analysis) have the potential of painting a more revealing pic- 
ture than just the temporal signal or frequency analysis alone. 

The earliest time-frequency representation (TFR) was the short-time Fourier 
transform (STFT; see Allen and Rabiner 1977). This scheme divides the temporal 
signal f( t)  into a series of small overlapping pieces. Each piece is then windowed 
and individually Fourier transformed. The STFT of a function f ( t )  is defined by 

co 
F s ~ ( t ,  w )  = / f ( t ) h ( t  - 7)eCiWT d7 (6.1) 2iT -m 

where h(7) is the window function. Contour plots of the energy density function 
I F s T ( t l W ) I  are typically presented. This scheme is most useful when the physical 
process is linear, so that the superposition of sinusoidal solutions is valid and the 
time series is locally stationary, so that the Fourier coefficients are slowly changing. 

One of the drawbacks of STFT is the presence of a fixed window although 
Czerwinski and Jones (1997) have developed a short-time Fourier analysis with an 
adaptively adjusting window. Wavelet analysis (see Daubechies 1992; Torrence and 

11 This paper is reprinted with the kind permission of the American Meteorological Society which 
holds its copyright. It originally appeared in the Journal of Atmospheric and Oceanic Technology, 
21, No. 4, 599-611, in an article by Dean G. Duffy entitled “The Application of Hilbert-Huang 
Transforms to Meteorological Datasets.” 
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Compo 1998) seeks to address this defect by decomposing the time series into local, 
time-dilated, and time-translated wavelet components using time-frequency atoms 
or wavelets $. The wavelet transform of the signal f ( t )  is then 

where a is the scale and b is the time shift. The wavelet transform represents the 
energy in the signal of temporal scale a at t = b. Wavelet analysis is attractive 
because 1) it is local, although higher frequencies are more localized; 2) it has 
uniform temporal resolution for all frequency scales; and 3) it is useful for charac- 
terizing gradual frequency changes. However, it is nonadaptive because the same 
basic wavelet is used for all data. 

Finally, empirical orthogonal function (EOF) analysis or its Fourier transform 
version, the singular spectral analysis (SSA), decomposes a time series using eigen- 
functions of the covariance matrix (see Ghil et al. 2002). This analysis is quite 
different from the short-time Fourier transform or wavelet analysis because the 
EOFs are derived from data. However, its distribution of eigenvalues does not yield 
characteristic time or frequency scales. Furthermore, the eigenfunctions themselves 
are not necessarily linear or stationary and therefore are not easily analyzed by 
spectral modes. 

From our experience with short-time Fourier transforms, wavelets, and EOF 
analyses, an ideal scheme for the spectral analysis of signals would be complete (i.e., 
the sum of the modes equals the original signal), orthogonal, local and adaptive. 
This method would also allow us to extract local time and frequency scales. The 
Hilbert-Huang transform is another step toward this goal. 

Hilbert transforms were originally developed to solve integral equations. Instead 
of re-expressing a function of time with its Fourier transform that depends on fre- 
quency, the Hilbert transform yields another temporal function that has been phase 
shifted by -90" via the integral definition: 

By itself, it holds little interest for us. However, when Gabor (1946) developed his 
theory of communications Hilbert transforms appeared in his concept of analytic 
signal, z ( t )  = f ( t )  + if^(t). A particularly interesting case occurs if f ( t )  is band 
limited. Then we can rewrite z ( t )  M A( t ) e i e ( t ) ,  a local time-varying wave with 
amplitude A(t) and phase O ( t ) .  

Most signals are not band-limited. Huang's great contribution was to devise a 
method, which he calls sifting, that decomposes a wide class of signals into a set 
of band-limited functions, which he calls intrinsic mode functions (IMFs). In their 
original paper, Huang et al. (1998a) tested out their analysis on simple nonlinear 
systems such as Stokes waves and the solutions to the Duffing and Lorenz equa- 
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tions. Subsequently, the Hilbert-Huang analysis has been applied to signals from 
pulmonary blood pressure (Huang et al. 1998b) to earthquakes (Huang et al. 2001) 
to the rotational residuals from the solar convection zone (Komm et al. 2001). In 
the atmospheric sciences, these transforms have been applied to climatic signals 
(Pan et al. 2003, Salisbury and Wimbush 2002, Wu et al. 1999, Xie et al. 2002). 
The purpose of this paper is to illustrate the advantages of applying Hilbert-Huang 
transforms to signals that include synoptic as well as climatic signals. 

A detailed description of the scheme is provided in section 6.2. In section 6.3, 
this scheme is then applied to datasets of sea level heights, incoming solar radiation, 
and barographic data. Conclusions are presented in section 6.4. 

6.2. Procedure 

The process of developing time-frequency diagrams using Hilbert-Huang transforms 
consists of three steps. The first step decomposes or “sifts” the signal into its intrinsic 
mode functions. The first intrinsic mode gives the smallest local variations of the 
original signal. Using a cubic spline, two envelope curves are generated; one of 
which connects the maxima of the signal while the other connects the minima. 
From these curves the mean is computed. The difference between the signal and 
this mean constitutes a first guess of the first IMF. If the IMF were sinusoidal, then 
the number of extrema would equal the number of zero crossings, or differ by one. 
This is usually not the case and suggests that our first guess, while good, needs 
further refinement because there may be yet smaller scales buried in the data. 

Originally Huang et al. [1998a, their equation (5.5)] repeated this sifting process 
until a Cauchy-like integral condition was satisfied. In later papers they adopted a 
stopping criterion based on the number of extrema and zero-crossings. When these 
quantities were equal, or differed by one, for three consecutive iterations, the IMF is 
set to the values found in the final iteration. This is the criterion that shall be used. 
Although it cannot be proven mathematically, this procedure always converged for 
the datasets tested here. 

To illustrate the decomposition process, Fig. 6.1 presents various steps in com- 
puting the first IMF. Figure 6.la presents a small portion of the original dataset - 
sea level observations taken at the mouth of the Chesapeake Bay during the 1980s. 
In addition to the oscillations due to the oceanic tides, there is a large peak at 133 
h due to the passage of Hurricane Gloria during the early hours of 27 September 
1985. 

Figures 6.lb and 6.lc show the first IMF after it has satisfied the convergence 
criteria for the first and last (third) time, respectively. Also shown are the top and 
bottom envelopes (the dashed lines) as well as the mean (the dotted line). Note how 
the sifting process has generated a mode that is symmetrical with respect to the 
abscissa. 
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Figure 6.1: The computation of the first intrinsic mode function from a sea level dataset. The 
solid line in (a) shows a portion of the original data with sea level height (in m). The solid lines 
in (b) and (c) show the first intrinsic mode when the mode’s extrema and zero crossings are equal 
or differ by one for the first and third times, respectively. The dashed lines give the envelopes, 
while the dotted line is the mean. (d) The first IMF from the original dataset (solid line) and the 
original data after applying a Shapiro filter (dashed line). (e) The signal after the first intrinsic 
mode has been removed. 

It will be shown shortly that this first IMF represents the semidiurnal tides. 
This mode varies smoothly except in the interval 125-150 h. If the original data 
record in Fig. 6.la is examined this behavior can be associated with several “kinks” 
in the data record. It is unclear whether these kinks are real or due to a failure of 
the instrument. 

To examine the effects that such kinks have on the construction of the IMFs, the 
original data was smoothed with a single pass of a simple Shapiro filter [a digital 
filter developed by Ralph Shapiro (1970) that eliminates waves with a period of 2At 
but leaves longer-period waves relatively unaffected]. After sifting, Fig. 6 . ld  gives 
the first IMF of the original (solid line) and smoothed (dashed line) data. This 
improved behavior in the structure of the IMF might argue for smoothing the data 
before applying Hilbert-Huang transforms. Unfortunately, filtering is a two-edged 
sword: It modifies both the true signal and eliminates noise. Because Huang-Hilbert 
transforms were designed specifically to analyze aperiodic and nonlinear signals 
(signals from nonlinear systems), the use of a linear filter could alter the signal in 
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way that might compromise the usefulness of the technique. For this reason, the 
presence of the noise will simply be endured. 

Once the first IMF is found, it is subtracted from the signal, yielding a residual 
that is smoother and has a lower frequency than the original signal because the first 
IMF captures the smallest local variation of the signal (see Fig. 6.le). The process 
then begins anew with the residual to obtain the second IMF. 

Having found the second IMF, it is subtracted from the residual, leaving an even 
smoother residual. Further modes are found in the same manner, and the sifting 
process concludes when there is no longer any maxima or minima in the residual. 
The original signal equals the sum of the various IMFs plus this small residual trend. 

One drawback in using a cubic spline to obtain the envelope curve is the possi- 
bility of large swings near the endpoints. The method of Komm et al. (200l), that 
adds buffer zones on each end that equal the length of the original data, has been 
adopted. The signal was extrapolated into these buffer zones by fitting a sine wave 
using the closest extrema and zero crossing to define the frequency and amplitude 
of the wave. 

Having determined the IMFs, the second step consists of computing the Hilbert 
transform T(t) of each mode f ( t )  and then the corresponding analytic signal ~ ( t )  = 
f ( t )  + if^(t). Because only numerical values are available, the conventional method 
of computing f ( t )  is to take the fast Fourier transform of the data, multiply the 
transform by i sgn(w), and then take the inverse Fourier transform of this product 
(see Ciiek 1970 or Henrici 1986, p. 203). Here sgn( ) denotes the sign function. 

Computing the instantaneous frequency w ( t )  from the data is difficult because it 
is the time derivative of O(t). Barnes (1992) tested a number of methods to compute 
it from f ( t )  and ?(t). He found that the best representation of the instantaneous 
frequency is 

f ( t  - At)T(t + At) - f ( t  + At)T(t - At) 
f(t  - At)f(t  + At) + f^(t + At)f^(t - At) 

1 w ( t )  = -tan-' 
2At 

where At denotes the time between observations. This is the method that will be 
used. 

Figure 6.2 illustrates the instantaneous amplitude A(t) and period P ( t )  = 
27r/w(t) corresponding to the first IMF shown in Fig. 6.1. The solid and dashed 
lines give the results for the original signal and Shapiro filtered signal, respectively. 
In both cases, the period equals approximately 12.5 h outside of the time interval 
from 125 and 150 h. Within the interval there are considerable differences between 
the original and smoothed data. Because analytic signals cannot have negative fre- 
quencies, the appearance of some suggests that the data are not correct here. For 
this reason, we will discard any amplitudes and periods when they are negative. This 
is acceptable because when the frequencies are negative the amplitude is small, as 
Fig. 6.2 shows. 
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Figure 6.2: The solid line gives the amplitude and period of the first IMF shown in Fig. 6.1. The 
dashed line also gives the amplitude and period of the first IMF of the signal shown in Fig. 6.1 
but the data have first been Shapiro filtered. 

Once the analytic signal for each IMF is obtained, the final task remains to 
display the results graphically. Although A( t )  and P(t)  could be plotted for each 
IMF, a better idea is to plot the square of the amplitude as a function of P(t )  and 
time, combining amplitude and period measurements of all IMF components on a 
single figure. This contour plot is commonly called the Hilbert spectrum, H ( t , w ) .  
Although two IMFs can have the same period, this will not occur at the same 
time and there is no ambiguity in constructing the Hilbert spectrum. Because most 
geophysical datasets contain a mixture of phenomena, with time scales varying 
from hours to years, it was found convenient to work with the logarithm of the 
instantaneous period rather than period itself. 

One problem with displaying the results is the irregularity of the location of the 
frequencies associated with each IMF at a given instant. Not only are these locations 
irregular but they also vary with time. Although most graphical packages can handle 
such irregularly spaced data, the plots are too noisy. One possible solution would 
be to construct a smoothed field before plotting. 

If the instantaneous amplitudes are viewed as “data” observed at various 
instantaneous periods, then regression techniques developed by statisticians for 
fitting a curve through data can be used (Ryan 1997, chapter 10). Because 
there is little a priori knowledge about the shape of the curve, a nonparamet- 
ric scheme that includes a kernel smoother is used. [Such a scheme was de- 
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Figure 6.3: Using sea level data, the curve fit when instantaneous amplitudes and periods over 
a 24-h interval are grouped together to form a single Hilbert-Huang transform (solid line). The 
dotted line is the average of 24 curve fits to each hour's instantaneous amplitudes and periods. 
Some of the instantaneous amplitudes used in computing the averages are plotted as data points. 

veloped by Herrmann (1996); the FORTRAN 77 code is available online at 
http://www.unizh.ch/biostat/Software/kernfl7.html.] 

For large datasets, this method was modified to include time averaging. There are 
two possible methods. One method would group all of the instantaneous amplitudes 
and periods within a particular time interval and assign them a common time. The 
second method would find curve fits at each time and then these curves would 
be averaged over an appropriate time interval. Figure 6.3 shows the instantaneous 
amplitudes and periods at four instances during the 24-h interval from 2330 LST 24 
September 1985 to 2330 LST 26 September 1985 using sea level data. The solid line 
shows the grouping of instantaneous amplitudes and phases to form a single time 
value, while the dashed line shows the averaging of the curve fits. The first methods 
retains the character of the higher-temporal-resolution amplitudes compared to the 
second method. 

As will be seen shortly, time-frequency plots contain a wealth of detail. For that 
reason, it is useful to integrate H ( t , w )  over time, say from 0 to T .  Because this 
marginal spectrum represents the energy of the signal, it is analogous to the power 
spectrum in Fourier analysis. Here a monochromatic, linear and periodic signal 
appears as a sharp peak in the marginal spectrum, whereas a nonlinear and nonpe- 
riodic phenomenon yields a broad peak in the spectrum. If the marginal spectrum 
is normalized by T, we have the average marginal spectrum. 
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Figure 6.4: The (a) Fourier power spectrum and (b) average marginal spectrum (in mz) derived 
from 48 000 h of sea level observations at the mouth of the Chesapeake Bay. 

6.3. Applications 

Having presented the procedure for constructing a Hilbert-Huang transform, this 
technique is now applied to three very different data fields: sea level heights, incom- 
ing solar radiation, and barographic observations. 

6.3.1. Sea level heights 

As a first application of the Hilbert-Huang transform to geophysical data, obser- 
vations were obtained of the sea level heights observed at the Chesapeake Bay 
Bridge and Tunnel (CBBT) from 0000 LST 8 April 1984 to 2300 LST 28 September 
1990. These 48000 hours of consecutive observations contain a wealth of physical 
phenomena-from highly predictable, astronomically forced tides to chaotic coastal 
storms. 

Figure 6.4 shows the Fourier power spectrum and average marginal spectrum 
for the sea level heights. The Fourier analysis only reveals a semidiurnal tide with a 
period of 12.42 h and a diurnal tide with a period of 23.93 h. The average marginal 
spectrum also reveals the semidiurnal and diurnal tides. This is consistent with a 
study by Susanto et al. (2000), who showed that Hilbert-Huang transforms capture 
the diurnal and semidiurnal tides in the Makassar Straits. Furthermore, the marginal 
spectrum captures a wealth of other physical phenomena. For example, there is a 
peak near 100 h due to baroclinic instability. (Baroclinic instability is the instability 










