
CHAPTER 7 

EMPIRICAL MODE DECOMPOSITION AND CLIMATE 
VARIABILITY 

Katie Coughlin and Ka Kit Tung 

Empirical mode decomposition (EMD) is used to extract inter-annual atmospheric 
signals. Our climate contains components that are often distinguished from one 
another on temporal, rather than spatial, scales, and EMD is found to be a useful 
tool in extracting physically meaningful information from the data. The National 
Centers for Environmental Prediction has provided reanalyzed data, which are 
used here to demonstrate that dynamical variables in the zonally averaged tro- 
posphere and lower stratosphere contain only five oscillating modes and a trend. 
These oscillations contain interesting amplitude and frequency modulations which 
are cumbersome and difficult to interpret when viewed in the traditional Fourier 
frequency domain. EMD analysis provides a unique, relatively unbiased and use- 
ful way to decompose the time series. Statistical tests are developed to determine 
the confidence in our analysis. Physical interpretations of the significant modes 
are also discussed with corresponding justification. By combining the information 
found for the time series of each horizontal strip into a spatial matrix, valuable 
spatial information about these physical processes have been obtained. 

7.1. Introduction 

Empirical mode decomposition (EMD) can be a useful time series analysis tool, par- 
ticularly for analyzing the climate records of the atmosphere beyond annual time 
scales. Global climate phenomena are often separated in temporal] rather than spa- 
tial, scales. Therefore, time series analysis is more appropriate for the initial decom- 
position of climate data than spatial methods, which have previously been used to 
find climate components. Furthermore, nonlinear trends, irregular frequencies and 
amplitude modulations, which are inherently present in these physical phenomena] 
make EMD especially appropriate for this problem. 

Understanding the variability of our climate is important. Atmospheric variabil- 
ity on inter-annual time scales is investigated here with a focus on observations in 
the regions which most influences us; the lower stratosphere (- 12 - 30 km) and the 
troposphere (0- 12 km). The main difficulty is disentangling the atmospheric signals 
in these regions. In both the stratosphere and the troposphere, inter-annual signals 
are mixed with one another as well as with noise. Isolating the relevant signals is a 
daunting task. Traditional time-series techniques] based on Fourier transforms, tend 
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to spread the signal energy into multiple frequency bins which sometimes leads to 
ambiguous interpretations of the data. Other methods, such as empirical orthogonal 
function (EOF) analysis, depend on spatial decompositions to filter the noisy data. 
However, as mentioned above, the signals of interest are mostly global in extent and 
distinguishable from one another temporally, not by their spatial scales. EOF anal- 
ysis leads to a leading mode which contains climate signals of various time scales 
projected - unphysically - onto a spatial pattern which contains the most vari- 
ance. Long period climate oscillations, which usually have a smaller variance than 
other oscillations, are either grossly distorted or missing altogether in the leading 
EOFs. There is no real reason why a spatial decomposition should isolate temporal 
signals. Here, we use the empirical mode decomposition (EMD) method, Huang et 
al. (1998) designed for time series analysis. The modes generated by this method 
are derived directly from the data. Here, we show that the atmospheric signals in 
the stratosphere and troposphere can be completely decomposed into five of these 
oscillating modes: an annual cycle, a Quasi-Biennial Oscillation (QBO) signal, an 
El Niiio/Southern Oscillation (ENS0)-like mode and a solar cycle mode. The last 
mode is a trend which indicates cooling in the stratosphere and warming in the 
troposphere, as expected from the recent increase in greenhouse gases. Statistical 
tests, used to determine the significance of these EMD modes, will also be discussed 
here. 

7.2. Data 

Atmospheric measurements are often made from balloons and aircraft with refer- 
ence to pressure levels instead of height, since the pressure can be measured more 
accurately in situ. The analysis shown here is plotted on pressure surfaces, measured 
in hecto-Pascals (hPa).** The pressure decreases as the distance from the surface 
increases and provides a useful axis for looking at atmospheric dynamics. 

The monthly averages of the NCEP Daily Global Analyses data are provided by 
the NOAA-CIRES Climate Diagnostics Center in Boulder, Colorado, USA, available 
on line at http://www.cdc.noaa.gov/ (Kalnay et al. 1996). These averages are used 
here to create a time series of geopotential height from January 1958 to July 2002. 
A spatial average of the total geopotential height from 20°N to 90"N is performed 
at 17 levels, from 10 hPa down to 1000 hPa. This averaged Northern Hemisphere 
time series is decomposed by using the EMD method, and the results are analyzed 
here. To investigate the latitudinal dependence, zonally averaged latitudinal strips 
of the total geopotential height are decomposed and analyzed as well. A typical 
tropospheric (stratospheric) decomposition of the total geopotential height at 700 
hPa (30 hPa), averaged from 20"N to 9O0N, is shown in Fig. 7.1. The results for 
all 17 levels show similar decompositions of the five modes, each with a variable 
amplitude and period, and a trend. 

**A hPa is equivalent to a mbar where pressure at the surface of the earth is N 1 bar = 1000 mb 
= 1000 hPa. 
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Figure 7.1: Top. The total geopotential height 
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at 30 hPa and 700 hPa spatially averaged over 
20°N to 90°N. Bottom. The decomposition of the 30 hP (left) and 700 hPa (right) geopotential 
height produces five modes and a trend. The first mode is the annual cycle. The second mode 
is the extratropical QBO, with an average period of 28 months. The third ENSO-like mode has 
an average period of around four years, and the fourth mode is highly correlated with the 11- 
yr sunspot cycle. We refrain from commenting on the 22-yr mode found since the data record 
contains only two periods of this oscillation. The trend in recent decades indicates cooling in 
the troposphere and warming in the stratosphere. This finding is consistent with the anticipated 
effect of the increase in greenhouse gases. Figure 7.1 was taken from Coughlin, K. T.,  and K.  K.  
Tung, 2004: 11-year solar cycle in the stratosphere extracted by the empirical mode decomposition 
method. Adv. Space Res., 34, 323-329 with permission. 

The sunspot record is provided by the SIDC, RWC Belgium, World Data Cen- 
ter for the Sunspot Index, Royal Observatory of Belgium, available on line at 
http://sidc.oma.be/. This record consists of monthly data from January 1749 to 
September 2002. Only the data from 1958 to 2002 are utilized here. 

The data used to characterize the QBO winds are from personal email commu- 
nications with Barbara Naujokat. As one of the compilers of the daily stratospheric 
charts at the Stratospheric Research Group of the Free University Berlin, she tab- 



152 K. Coughlin and K.  K. T u n g  

ulated the daily wind observations of selected stations near the equator since 1957. 
For the earlier years, the values were extracted from the Northern Hemisphere Data 
Tabulations. From these daily values, the monthly mean zonal wind components 
were calculated for the levels 70, 50, 40, 30, 20, 15, and 10 hPa, and a dataset from 
1953 to the present was produced by combining the observations from the three ra- 
diosonde stations; Canton Island (closed 1967), Gan/Maledive Islands (closed 1975), 
and Singapore. The negative values are easterly (from the east), and the positive 
values are westerly. This dataset is supposed to represent the equatorial belt since 
all studies have shown that the longitudinal differences in the phase of the QBO 
are small. However, some uncertainties arose at higher levels during the early years 
because of the scarcity of observations. More information on the data can be found 
in Naujokat (1986). 

The Multivariate ENSO Index (MEI) bimonthly time series from Dec/Jan 
1949/1950 up to Nov/Dec 2003 is used as a robust measure of the ENSO. More 
information on the ME1 can be found on the ME1 homepage, available online 
at  www.cdc.noaa.gov/Nkew/MEI/mei.html, and in Wolter (1987) and Wolter and 
Timlin (1993,1998). 

7.3. Methodology 

Climate signals in the atmosphere are often lost among the noise and data-collection 
and assimilation problems. Although climate signals are recognized mainly by their 
time scales, previous analysis, such as the use of empirical orthogonal functions 
(EOFs), relies on spatial decompositions to remove excess noise. In some cases, this 
method is useful, but in general, there is no a pn'on' reason to expect temporal sig- 
nals to be defined in terms of spatial patterns ordered by their variances (as required 
by EOF analysis). In fact, time series analysis is more appropriate for the decom- 
position of climate signals. The traditional time series analysis tools usually rely 
on Fourier transforms in one way or another. However, Fourier transforms lead to 
inconclusive interpretations due mainly to the global nature (in the time domain) of 
the transforms. Even wavelet analysis, developed to deal with non-stationarity and 
local frequency changes, produces confusing and sometimes contradictory results 
when applied to climate signals (Mak 1995; Oh et al. 2003; Sonechkin and Dat- 
senko 2000). These three papers all use similar types of wavelet analysis on global, 
surface climate data and obtain three different results. With wavelet analysis, it is 
sometimes difficult to distinctly define local frequency changes because the spectra 
are created by stepping through various predetermined frequencies, often producing 
a blurred result. Wavelets have the additional problem of shift variance. If the start- 
ing point is varied by dropping the initial point, for example, wavelet analysis can 
produce completely different results. In comparison, the EMD method makes no 
assumption about linearity or stationarity, and the intrinsic mode functions (IMFs) 
are usually easy to interpret and relevant to the physical system being studied (see 
Flandrin et al. 2004; Huang et al. 1998, 1999; Zhu et al. 1997 for further discussion 
of the method and comparison to other time series analysis techniques) 
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EMD must be used cautiously even though it is a powerful method. One difficulty 
encountered when using it is the sensitivity to end point treatments. The envelopes 
are calculated by using a cubic spline; however, splines are notoriously sensitive 
to end points. The end effects must not be allowed to propagate into the interior 
solution. As described in Coughlin and Tung (2004a), this problem is dealt with by 
extending both the beginning and end of the data by the addition of typical waves, 

wave extension = A s i n ( 2 ~ t / P )  + phase) + local mean. (7.1) 

The typical amplitude A and period P are determined by the nearest local extrema; 
i.e., 

A b e g i n n i n g  = max(1) - min(l)ll, (7.2) 

Aend = max(N) - min(N)II , 

P b e g i n n i n g  = 2JJtime(max(l)) - time(min(I))il, 

P e n d  = 2lltime(max(N)) - time(min(N))ll, 

(7.3) 

(7.4) 

(7.5) 

where max(1) and min(1) are the first two local extrema in the time series, and 
max(N) and min(N) are the last two local extrema. This calculation takes place 
every iteration so that the additional waves are continually changing in amplitude 
and frequency. Because the additional waves have the same amplitude as the near- 
est oscillations, the addition of these waves causes the slope of the envelope to tend 
toward zero at  the beginning and end of the time series. This technique eliminates 
large swings in the spline calculation that may otherwise form when the slope is 
artificially forced to zero. Two or three oscillations of approximately the same am- 
plitude are needed in order to flatten the spline. Any more than this can adversely 
affect the low frequency modes by artificially leveling the ends of any long-term 
trend present in the data. 

The stopping criterion is another issue that can affect the decomposition. In 
order to allow more natural flexibility in the modes, we stop the sifting process and 
define a mode when the number of extrema is equal to or one different from the 
number of zero crossings (our criterion is similar to the one suggested in Huang et 
al. 1999). We also require this condition to be consistent for three iterations in a row 
in order to constrain the local means to be close to zero. If the Hilbert transform is 
to be used on the subsequent modes, a stricter condition on the local mean may be 
useful since the Hilbert transform is very sensitive to changes in this mean. In our 
analysis, however, we compare the modes directly to physically relevant oscillations 
and are less concerned with a precise zero mean. 

Another important component of the analysis, as described in Coughlin and 
Tung (2004a), is the inclusion of the annual cycle. Unlike more traditional meth- 
ods, where a twelve-month climatology is subtracted from the data and only the 
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anomalies are studied, this method decomposes the total atmospheric signal, not 
just the anomalies. In fact, the removal of climatology, which is a linear operation, 
can actually degrade the nonlinear analysis. Here, the annual cycle is an important 
component and is retrieved as the first IMF in the decomposition. In some cases, 
a three-month running average can be applied to the time series to damp month- 
to-month variations and retrieve the annual cycle as our first mode. These higher 
month-to-month frequencies are either intermittent or appear to be intermittent. In 
either case, the resulting modes contain a mixture of frequencies, and these mixed 
modes are much more difficult to interpret than other modes. Since we are not inter- 
ested in intraseasonal variations, a minimal amount of pre-smoothing is performed 
so that the first mode will contain the annual cycle. Since the annual cycle is rela- 
tively small near the equator, where the seasons are less distinct, we expected our 
results to be somewhat degraded in this region due to the pre-smoothing process 
that takes place there, but surprisingly, we find that the equatorial signals remain 
relatively robust in most cases. 

The IMFs will generally be ordered from high to low frequency, and the last 
IMF often contains a trend. The significance of the IMFs must be determined. We 
should not expect all modes to be significant. 

7.4. Statistical tests of confidence 

The significance of the EMD modes must be calculated. Our confidence in these 
modes can be tested by comparing their energy spectra to the energy spectrum of 
decomposed noise. Our statistics are developed specifically for this climate problem 
(see Coughlin and Tung 2004a). 

To distinguish the signals from noise in the EMD method is used, we examine 
the energy of all the IMFs and compare the energy in each mode to the energy 
distribution of red noise. Typically, we may expect the highest frequency mode to 
contain only noise, so the power in this mode can then be used to calibrate the 
noise distribution. However, in this case, the first mode contains a climatological 
annual cycle, which obviously does not contain pure noise. To estimate the power 
of the noise present in this time series, we subtract the climatology from the first 
mode and assume that the remainder is noise. This estimate of the noise is still 
very conservative. However, by using this criteria, we can normalize the red noise 
spectrum and perform a Monte-Carlo simulation to test the significance of the 
remaining IMFs. In atmospheric phenomena, the data at one time step tend to be 
related to the data at the previous time step. For example, the temperature on a 
day (or month) will be similar to the temperature on the day (or month) before. 
This similarity is called “persistence,” and this “redness” or autocorrelation should 
be accounted for when creating Monte-Carlo simulations to test the significance of 
the decomposition. In our simulations Coughlin and Tung (2004a,b), we create 500 
random “red” time series with the same autocorrelation as that of the difference 
between the data and the climatology. The variance of these time series is calculated 
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based on the ‘‘noise” in the first mode, which is found by subtracting the climatology 
from the first mode, and then the original climatology is added back into each of 
these time series before using EMD to define their modes. In this way, the first mode 
contains the annual cycle, and the power of the original remaining modes can then 
be compared to the power in the modes created from the red noise. The red noise, 
or random time series, is 

Anoise = standard deviation (IMF1 - climatology), (7.7) 

and 

p = autocorrelation of (total geopotential height - climatology), (7.8) 

where E contains a uniform distribution of random numbers with values between 1 
and -1, t ,  is the nth time step, and rts is the random time series generated. The 
climatology is the geopotential height averaged over all years of the data record for 
each individual month and is added to the random time series before applying the 
EMD method. 

EMD modes are generated by using these time series, and then the statistics 
of this simulation are calculated to create the energy distribution of the noise. 
The power of each IMF is then compared to this distribution to determine its 
significance. 

In Fig. 7.2, the average power per period of modes 2, 3 and 4 in the 30-hPa 
and 700-hPa geopotential height is compared to that of modes 2, 3 and 4 of 500 
randomly generated time series. These series are created by adding the 30-hPa, 
or 7OO-hPa, climatology to appropriately scaled red noise. For randomly generated 
time series, the EMD method exhibits a period doubling phenomenon so that each 
mode tends to have an average period of about twice that of the previous mode 
(as described in Flandrin et al. 2004). This result creates a clustering of the modes 
about certain periods in the Monte-Carlo plot (Fig. 7.2). The average power of the 
random modes varies inversely to that of the average period (power N l/period) 
so that the modes quickly decrease in power as the average period increases. Here, 
the power per period is plotted, allowing one to directly compare each mode, so the 
points actually decrease in inverse proportion to the square of the period. The thick 
line is the linear least squares fit of the noise, and the dashed line is one standard 
deviation above this best fit line. The three stars represent the average power per 
period of IMF 2, IMF 3 and IMF 4 of the 30-hPa, or 700 hPa, geopotential height 
at average periods of 28, 59 and 132 months, respectively. These modes all fall 
above the confidence interval and therefore are significant. This finding indicates 
that modes 2, 3 and 4 are real signals, different from random red noise. They make 
significant contributions to the observed geopotential height. 
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timescales equivalent to or greater than the periods of the last subtracted mode. For 
example, in the decomposition of the 30-hPa geopotential height, the third IMF has 
an average period of 4.4 yr. This finding implies that the fourth IMF is composed 
of data which are dependent on timescales of about 4.4 yr. Conservatively, then, 
we estimate that the fourth IMF has independent time intervals of 5 yr. By using 
this estimate, nine independent measurements of the time series can be made for 
the 4th IMF at 30-hPa, and, therefore, v = 7 degrees of freedom for the correlation 
calculation. For this example, correlations with the solar flux are calculated by com- 
paring the data every 60 months (see Fig. 7.3). These correlations average to 0.70. 
For comparison, the correlation coefficient, calculated by using every month in the 
unsmoothed sunspot numbers, is 0.72. For this mode, the correlation is very robust. 
If the student t-test is used, the 0.70 correlation is statistically different from the 
null hypothesis of a zero correlation. Although this correlation is significant at a 
higher level, all of our significance testing is done at a 95% confidence level. 

This statistical relationships can also be verified by using a regression with auto- 
regressive (AR) errors. For the above example, we assume that the IMF contains 
the solar cycle plus an autoregressive error, 

IMF4(t) = b[SI(t) - p ]  + e ( t )  . (7.10) 

Here, SI is a solar cycle index defined to be the sunspot number divided by 1000. 
The parameters, b and p and their variances can be found by fitting the error e( t )  
to an AR(p) process for some order p .  More information about this type of method 
can be found in Newton (1988). For this mode, the parameter values do not change 
significantly for different orders; however, we find that the best fit for the errors 
is an autoregressive process of order 5. This order gives the parameter values of 
p = 0.082 * 0.013 and b = 42 31 7 as the best fit for this model. Since b = 42 is 
about 6 times its standard error, we can effectively rule out the hypothesis b = 0. 
This conclusion implies that the solar cycle is directly related to the fourth IMF. 
The regression is highly significant, and the sunspot cycle statistically explains the 
majority of the fourth mode. A similar type of analysis is performed for the other 
modes. 

7.5. Results and physical interpretations 

Figure 7.1 shows the complete decomposition of the 30-hPa and 700-hPa geopoten- 
tial height spatially averaged over all longitudes and latitudes from 20"N to 90"N. 
Although the EMD modes are empirically determined, they remain locally orthog- 
onal to one another. The time series is separated into five modes and a trend. The 
first IMF contains the annual cycle. The second IMF has an average period of 28 
months and is anti-correlated with the equatorial QBO. The third ENSO-like mode 
has an average period of four years. The fourth mode, with an average period of 11 
yr, is highly correlated with the solar cycle, and the trend indicates cooling in the 
stratosphere over time. These trends are consistent with theories of stratospheric 
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Correlations between the Sunspot Cycle and IMF 4 of 30 rnb and 700 rnb 
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Figure 7.3: Significant correlation is 0.70 for 30 mb and 0.58 for 700 mb. Significance assumes 
that the mode has only 7 degrees of freedom. Figure 7.3 was taken from Coughlin, K. T., and K. K. 
Tung, 2004: 11-year solar cycle in the stratosphere extracted by the empirical mode decomposition 
method. Adv. Space Res., 34, 323-329 with permission. 

cooling due to increases in greenhouse gases. Amazingly, similar decompositions are 
found at almost all heights and latitudes. 

7.5.1. Annual cycle 

Although most analysis of atmospheric data begins by subtracting a climatological 
mean from the time series, the winter-to-summer differences are retained in this 
analysis. As a result, the very first mode is always a large annual cycle. Because 
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Figure 7.4: Amplitude modulations of the first mode. At 30 hPa the first IMF of the total 
geopotential height at the pole, from 65'N to 90'N. 

the EMD method is non-stationary and nonlinear, we can look at the seasonal 
variations. Figure 7.4 shows that the annual cycle is not strictly regular in frequency 
or amplitude. 

7.5.2. Quasi-Biennial Oscillation (QBO) 

The second mode has an average period of 28 months and, in the extratropics, is 
anticorrelated with the equatorial QBO. Its see-saw pattern of geopotential height 
(see Holton and Tan 1980) with a node at 50"N is apparent in Fig. 7.5. The extra- 
tropical manifestation of the QBO in the stratosphere is relatively well understood: 
During winter, the polar geopotential height is anticorrelated with the equatorial 
winds due to the Holton-Tan mechanism (Holton and Tan 1980,1982; Tung and Yang 
1994) and to the asymmetrical QBO direct circulation in the lower stratosphere 
(Jones et al. 1998; Kinnersley 1998; Kinnersley and Tung 1999). The tropospheric 
mechanism is not yet understood but has been observed in previous work (Coughlin 
and Tung 2001; Thompson et al. 2002). Here, the correlations in the troposphere are 
small, probably due to the short data record and the possible phase shifts associated 
with the influence of the equatorial QBO at various levels besides 30 hPa. 

7.5.3. ENSO-like mode 

The third ENSO-like mode has an interesting latitudinal and height structure. It is 
positively correlated with the Multivariate ENS0 index in the tropical troposphere 
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Correlation between IMF 2 and the QBO at 30 mb 

Latitude 

Figure 7.5: A correlation map of the second mode and the equatorial QBO. A map of correlation 
coefficients between the second IMF at each height latitudinal strips of 20" and the QBO Index. 
The coefficients are plotted at the height and mean latitude of each decomposition. The horizontal 
axis ranges from 40"s to 80'N. 

and anticorrelated in the extratropical troposphere, between 40"N and 60"N. The 
signal also seems to have influence higher up into the atmosphere, both in the 
tropical and extratropical regions, but the correlations there are not statistically 
significant because a zonal average is taken here, which cancels out most of the pos- 
itive and negative signals in the Pacific basin. Wu and Huang (2004) have also used 
EMD to analyze an ENS0 signal. In general, the influence of this signal deserves 
further analysis. 

7.5.4. Solar cycle signal in the stratosphere 

The fourth IMF has the same frequency as that of the 11-yr solar cycle and also 
contains amplitudes comparable to those previous estimates of geopotential height 
solar cycle variations. More in-depth discussion of this mode can be found in Cough- 
lin and Tung (2004a,b). In our analysis, the peak-to-peak amplitude variation of 
the solar cycle signal is about 50 m for the geopotential height averaged over the 
Northern Hemisphere at 30 hPa. In Labitzke's (2001) paper, a 3-yr running mean 
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of geopotential height at 30 hPa and at a selected location, 3"N/15OoW, from 1958 
to 1997 has peak-to-peak amplitude variations ranging from 40 to 90 meters. 

Although many reports have been made of the 11-yr solar cycle in atmospheric 
data, a considerable debate is taking place about the spatial and temporal extent 
to which the atmosphere is influenced by the 11-yr variations in the solar irradiance 
and about the validity of the statistical significance of these claims. A major problem 
is the shortness of the data record, which prevents a straightforward extraction of 
an 11-yr signal in the energy spectrum of dynamical variables. 

A small amplitude solar cycle signal has, nevertheless, been found in the quies- 
cent regions of the dataset by previous authors. In the extratropical middle atmo- 
sphere, this signal has been found during summers (Labitzke 1987; Labitzke and 
van Loon 1988, 1989; Kodera 1991; Dunkerton and Baldwin 1992; van Loon and 
Labitzke 1994) - away from the time periods of most variability - over the mid- 
latitude Pacific (Gray and Ruth 1993; Haigh 2002; Labitzke 2001; Labitzke and van 
Loon 1992, 1994, 1999) - away from the spatial areas of the most variability - 
and during the westerly phases of the QBO (Labitzke 1987; Labitzke and van Loon 
1988, 1994; Gary and Ruth 1993, Ruzmaikin and Feynman 2002) - away from the 
periods of the most dynamical disturbance. 

During these quiescent periods of time and in quiescent regions of space, the 
stratosphere is observed to be positively correlated with the solar cycle. What we 
find (see Coughlin and Tung 2004a,b) is a solar cycle signal in a more general and 
global sense, without resorting to any specific grouping of the data, either by season, 
area or the phase of the QBO. This consideration is important in the test for the 
statistical significance of the signal, as the stratospheric record is short with less 
than five cycles of the solar signal. The spatial structure of the fourth mode is shown 
in Fig. 7.6. From these correlations, we see that a component of the climate is always 
in sync with the solar cycle. In the region between 50's and 50"N, the coherence 
between the atmospheric signal and the solar flux is robust. These solar signals are 
constant in amplitude and have very little latitudinal or vertical variation. At the 
poles, the signal is less robust, perhaps because of poor data quality at the poles, 
or because of a real difference in this region. We reserve that analysis for future 
investigation. 

The correlation map in Fig. 7.6 shows statistically how closely these signals are 
related to the solar flux. The solar flux is positively correlated with the fourth mode 
almost everywhere in our domain (see Fig. 7.6). In contrast to mode 2 (Fig. 7.5) and 
mode 3, which have interesting spatial structures, mode 4 is comparatively uniform. 
The only minor exception is in the south polar region, and the correlations there 
are not statistically significant. 

7.5.5. Fifth mode 

The fifth IMF contains only one or two oscillations, and little is known about it. 
Some researchers have speculated that it may be related to a double solar period 



162 K. Coughlin and K. K. Tzlng 

Correlation between IMF 4 and the Solar Cycle 
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Figure 7.6: A correlation map of the fourth mode and the solar flux. A map of correlation 
coefficients between the fourth mode of each latitudinal strip and the solar flux. The coefficients 
are plotted at the pressure altitude and mean latitude of each decomposition. The horizontal axis 
ranges from 40's to 80'N. Figure 7.6 was taken from Coughlin, K. T., and K. K. Tung, 2004: 
11-year solar cycle in the stratosphere extracted by the empirical mode decomposition method. 
Adv. Space Res., 34, 323-329 with permission. 

or to the Pacific Decadal Oscillation (PDO), but correlations show that it proba- 
bly is not. Moreover, although it is correlated with the double solar cycle, it is not 
statistically significant because we only have two such periods. Another theory is 
that this mode may actually be physically associated with the trend. In that case, 
it might represent further nonlinearities in the anthropogenic influences on the at- 
mosphere. For now, however, we reserve further comment until these possibilities 
can be distinguished from one another. 

7.5.6. Trends 

The trends, as seen in Fig. 7.1, are very robust in that the stratosphere exhibits 
cooling, and the troposphere has experienced warming over the last few decades. 
This finding is consistent with the anticipated effect of recent increases in greenhouse 
gases. 

7.6. Conclusions 

Through the EMD representation, we are able to see the natural variations in the 
atmosphere. This method is both compact and complete. We are able to completely 
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describe the changes in the lower atmosphere with only 5 modes and a trend. Each 
of these modes is empirically determined and not artificially constrained to have 
fixed amplitudes or frequencies. Furthermore, the statistically significant modes 
can be identified with known physical phenomena. Here, this ability allows us to 
gain a straightforward view of our climate, its components and the temporal/spatial 
distribution of these physical phenomena. The signals occur almost everywhere in 
the lower atmosphere (Figs. 7.5 and 7.6). We find that the significant inter-annual 
atmospheric modes include the QBO mode, the ENSO-like mode, the solar cycle, 
and climate trends that are consistent with the increases in greenhouse gases. 
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