![]() |
|||||||||||||||||||||||||||||||||
|
|
||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
![]() |
||||||||||||||||||||||||||||||
![]() |
![]() |
||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
![]() |
||||||||||||||||||||||||||||||
![]() |
![]() |
Выход | ![]() |
Ваш Login: "prodav". |
Раздел "Обработка сигналов и изображений\Wavelet Toolbox" "Вейвлеты, аппроксимация и статистические приложения" (перевод К.А.Алексеева) В оглавление \ К следующему разделу \ К предыдущему разделу 10. Статистические приложения вейвлет-функций 10.6 Несколько практических примеров Оценивание функций плотности прибылей Для заданной последовательности финансовых данных, например, цен Между тем, в литературе, опубликованной в последнее время, положение о нормальности подвергалось известной критике: в частности, подчеркивалось, что нормальность не отражает фактического положения дел в финансовых рядах таких, например, как обмен валют: в распределении излишни хвосты, имеют место весьма слабая концентрация в центре, многомодальность, соответствующая различным фазисам торгов. Применим в данном примере технику вейвлет-оценивания для установления вопроса относительности нормальности и негауссовости распределения. Отметим, что данный пример ограничивается применением некоторых конкретных данных В первом примере рассмотрим данные, приведенные в [50] и содержащие величину прибыли акций IBM за период с июля 1963 года по июнь 1968, а также прибыли рыночного портфеля. Сравним эти два распределения. На рис. 10.14 изображены данные о прибылях IBM, параметрическая нормальная оценка плотности, а также вейвлет-оценка, полученная с использованием мягкого трешолдинга, порог которого равен Рассмотрим следующий набор данных из указанного выше источника: рыночный портфель. С этой целью выберем тот же порог, уровень и тип вейвлета, использованные в первом примере. Из рис. 10.15 видно, что оценка является более близкой к нормальному закону. Дело в том, что большее приближенность оценки к нормальности достигается за счет использования гипотезы о квази-гауссовости статистик. Обратимся теперь к рассмотрению обменного курса валют доллар США - немецкая марка, изображенного в верхней части рис. 10.16. Здесь отрезок времени наблюдения равен периоду наблюдений, представленных ранее на рис.1.1. В нижней части рисунка представлены оценки плотностей распределения прибылей. Как видно, распределение содержит весьма приземистые хвосты и четко выраженные центральные моды, причем нормальная оценка чересчур явственно отображает центральный пик и имеет более высокоподнятые хвосты за пределами области с единичным СКО. Рис. 10.14 Оценка плотности прибылей IBM. Использован мягкий трешолдинг с порогом Рис. 10.15 Оценка рыночного портфеля. Использован мягкий трешолдинг с порогом Рис. 10.16 Сравнительный анализ оценок плотностей распределения прибылей обменных курсов. Наверху - курс обмена валют, внизу - нормальная и вейвлет-оценка плотностей распределения Оценивание плотностей доходов В данном разделе займемся изучением объемов расходов, фиксируемых у некоторых частных домовладельцев Великобритании каждый год, начиная с 1957 года. Число наблюдаемых домовладельцев составляет примерно 7000 человек в год, что составляет 5% общего числа владельцев недвижимости в Великобритании. Исследуемый ряд представляет собой детальную информацию о домовладениях, их размер, месторасположение, год постройки, материал постройки и т.д. Поскольку теория спроса, описанная, например, в работе [74], подразумевает, прежде всего, анализ структуры и величины доходов, главным предметом приложения теории является стабильность распределения доходов во времени. Рассмотрим оценки плотностей распределения объемов доходов за период времени, соответствующий 1969-1983 г.г. Ранние попытки построения оценок основывались на предположении о логнормальности распределения [74]. Правда, такое параметрическое предположение не позволяет отражать возможные изменения в доходной части бюджета, наблюдавшиеся особенно в эпоху правления М.Тетчер, и, в частности, исключаемую возможность многомодальности. Оцениваемые плотности построены с использованием симмлета 4 порядка, мягкого трешолдинга с порогом, равным Рис. 10.17 Распределение доходов в 1969-1972 гг. Рис. 10.18. Распределение доходов в 1973-1976 гг. Рис. 10.19 Плотности распределения доходов в 1977-1980 гг. Рис. 10.20 Плотности распределения доходов в 1981-1983 гг., 1969-1983 гг. |
|