Rambler's Top100 II Всероссийская конференция пользователей MATLAB, 25-26 мая 2004 года >>
На первую страницу
Рубрика Matlab&Toolboxes
Российские MATLAB-разработки
Ваш Login: "prodav".

Раздел "Обработка сигналов и изображений\Wavelet Toolbox"

"Вейвлеты, аппроксимация и статистические приложения" (перевод К.А.Алексеева)

  В оглавление книги \ К предыдущему разделу

Список литературы

  1. Abramovich, F., Benjamini, Y. (1996). Adaptive thresholding of wavelet coefficients, Computational Statistics and Data Analysis 22: 351-361
  2. Adams, R. (1975). Sobolev Spaces, Academic Press, New York.
  3. Antoniadis, A. (1994). Smoothing noisy data with tapered coiflet series, Technical Report RR 993-M, University of Grenoble.
  4. Antoniadis, A., Gregoire, G., McKeague, I. (1994). Wavelet methods for curve estimation, Journal of the American Statistical Association 89: 1340-1353.
  5. Antoniadis, A, Oppenheim, G. (1995). Wavelets and Statistics, Vol. 103 of Lecture Notes in Statistics, Springer, Heidelberg.
  6. Assouad, P. (1983). Deux remarques sur l'estimation, Comptes Rendus Acad. Sci.Paris (A) 296: 1021-1024.
  7. Auscher, P. (1992). Solution of two problems on wavelets, Preprint, IRMAR, Univ. Rennes I.
  8. Bergh, J., Lofstrom, J. (1976). Interpolation spaces - An Introduction, Springer Verlag, New York.
  9. Besov, O. V., Iliin, V. L. & Nikolskii, S. M. (1978). Integral Representations of Functions and Embedding Theorems., J. Wiley, New York.
  10. Beylkin, G., Coifman, R. R. & Rokhlin, V. (1991). Fast wavelet transforms and numerical algorithms, Comm. Pure and Appl. Math. 44: 141-183.
  11. Birge, L. (1983). Approximation dans les espaces metriques et theorie de l'estimation, Zeitschrift fur Wahrscheinlichkeitstheorie und verwandte Gebiete 65: 181-237.
  12. Birge, L. & Massart, P. (1997). From model selection to adaptive estimation, in Pollard(ed.), Festschrift for L. Le Cam, Springer, pp. 55-88.
  13. Black, F. & Scholes, M. (1973). The pricing of options and corporate liabilities, Journal of Political Economy 81: 637-654.
  14. Bossaerts, P., Hafner, C. & Hardle, W. (1996). Foreign exchange-rates have surprising volatility, in P. Robinson (ed.), Ted Hannan Memorial Volume, Springer Verlag.
  15. Bretagnolle, J. & Huber, C. (1979). Estimation des densites: risque minimax, Z. Wahrscheinlichkeitstheorie und Verwandte Gebiete 47: 119-137.
  16. Brown, L.-D. & Low, M. L. (1996). Asymptotic equivalence of non-parametric regression and white noise, Annals of Statistics 24: 2384-2398.
  17. Bruce, A. & Gao, H.-Y. (1996). Applied Wavelet Analysis with S-Plus, Springer Verlag,Heidelberg, New York.
  18. Bruce, A. & Gao, H.-Y. (1996). Understanding waveshrink: variance and bias estimation, Biometrika 83: 727-745.
  19. Burke-Hubbard, B. (1995). Ondes et ondelettes, Pour la science, Paris.
  20. Centsov, N. N. (1962). Evaluation of an unknown distribution density from observations, Soviet Math. Dokl. 3: 1599-1562.
  21. Chui, C. (1992). An Introduction to Wavelets, Academic Press, Boston.
  22. Chui, C. (1992). Wavelets: a Tutorial in Theory and Applications, Academic Press, Boston.
  23. Cohen, A., Daubechies, I., Vial, P. (1993). Wavelets on the interval and fast wavelet transform, Journal of Applied and Computational Harmonic Analysis 1: 54-81.
  24. Cohen, A., Ryan, R. (1995). Wavelets and Multiscale Signal Processing, Chapman & Hall.
  25. Coifman, R. R., Donoho, D. (1995). Translation-invariant de-noising, in Antoniadis & Oppenheim (1995), pp. 125-150.
  26. Dahlhaus, R. (1997). Fitting time series models to nonstationary processes, Annals of Statistics 25: 1-37.
  27. Daubechies, I. (1988). Orthonormal bases of compactly supported wavelets, Comm. Pure and Appl. Math. 41: 909-996.
  28. Daubechies, I. (1992). Ten Lectures on Wavelets, SIAM, Philadelphia.
  29. Delyon, B., Juditsky, A. (1996). On minimax wavelet estimators, Journal of Applied and Computational Harmonic Analysis 3: 215-228.
  30. Delyon, B., Juditsky, A. (1996). On the computation of wavelet coefficients, Technical report, IRSA/INRIA, Rennes.
  31. DeVore, R. A., Lorentz, G. (1993). Constructive Approximation, Springer-Verlag, New York.
  32. Donoho, D. (1992). De-noising via soft-thresholding, Technical report 409, Dept. of Statistics, Stanford University.
  33. Donoho, D. (1992). Interpolating wavelet transforms, Technical report 408, Dept. of Statistics, Stanford University.
  34. Donoho, D. (1993). Smooth wavelet decompositions with blocky coefficient kernels, Technical report, Dept. of Statistics, Stanford University.
  35. Donoho, D. (1994). Statistical estimation and optimal recovery, Annals of Statistics 22: 238-270.
  36. Donoho, D. (1995). Nonlinear solutions of linear inverse problems by wavelet-vaguelette decomposition, Journal of Applied and Computational Harmonic Analysis 2: 101-126.
  37. Donoho, D., Johnstone, I. (1991). Minimax estimation via wavelet shrinkage, Tech. Report, Stanford University.
  38. Donoho, D. & Johnstone, I. (1994). Ideal spatial adaptation by wavelet shrinkage, Biometrika 81: 425-455.
  39. Donoho, D. & Johnstone, I. (1994). Minimax risk over -balls for -error, Probabiliy Theory and Related Fields 99: 277-303.
  40. Donoho, D. & Johnstone, I. (1995). Adapting to unknown smoothness via wavelet shrinkage, Journal of the American Statistical Association 90: 1200-1224.
  41. Donoho, D. & Johnstone, I. (1996). Neoclassical minimax problems, thresholding and adaptive function estimation, Bernoulli 2: 39-62.
  42. Donoho, D., Johnstone, I., Kerkyacharian, G. & Picard, D. (1995). Wavelet shrinkage: Asymptopia?, Journal of the Royal Statistical Society, Series B 57: 301-369.
  43. Donoho, D., Johnstone, I., Kerkyacharian, G. & Picard, D. (1996). Density estimation by wavelet thresholding, Annals of Statistics 24: 508-539.
  44. Donoho, D., Johnstone, I., Kerkyacharian, G. & Picard, D. (1997). Universal near minimaxity of wavelet shrinkage, in D. Pollard (ed.), Festschrift for L. Le Cam, Springer, N.Y. e.a., pp. 183-218.
  45. Donoho, D., Mallat, S. G. & von Sachs, R. (1996). Estimating covariances of locally stationary processes: Consistency of best basis methods, Technical report, University of Berkeley.
  46. Doukhan, P. (1988). Formes de Toeplitz associees a une analyse multiechelle, Comptes Rendus Acad. Sci.Paris (A) 306: 663-666.
  47. Doukhan, P. & Leon, J. (1990). Deviation quadratique d'estimateurs d'une densite par projection orthogonale, Comptes Rendus Acad. Sci. Paris, (A) 310: 425-430.
  48. Efroimovich, S. (1985). Nonparametric estimation of a density with unknown moothness, Theory of Probability and its Applications 30: 524-534.
  49. Efroimovich, S. & Pinsker, M. (1981). Estimation of square-integrable density on the asis of a sequence of observations, Problems of Information Transmission 17: 182-195.
  50. Fama, E. F. (1976). Foundations of Finance, Basil Blackwell, Oxford.
  51. Fan, J. (1994). Test of significance based on wavelet thresholding and Neyman's truncation. Preprint.
  52. Fix, G. & Strang, G. (1969). A Fourier analysis of the finite element method, Stud. Appl. Math. 48: 265-273.
  53. Foufoula-Georgiou, E. & Kumar, P. (eds) (1994). Wavelets in Geophysics, Academic Press, Boston/London/Sydney.
  54. Gao, H.-Y. (1993). Choice of thresholds for wavelet estimation of the log spectrum. Preprint 430. Dept. of Stat. Stanford University.
  55. Gao, H.-Y. (1993). Wavelet estimation of spectral densities in time series analysis. PhD Dissertation. University of California, Berkeley.
  56. Gasser, T., Stroka, L. & Jennen-Steinmetz, C. (1986). Residual variance and residual pattern in nonlinear regression, Biometrika 73: 625-633.
  57. Genon-Catalot, V., Laredo, C. & Picard, D. (1992). Nonparametric estimation of the variance of a diffusion by wavelet methods, Scand. Journal of Statistics 19: 319-335.
  58. Ghysels, E., Gourieroux, C. & Jasiak, J. (1995). Trading patterns, time deformation and stochastic volatility in foreign exchange markets, Discussion paper, CREST, Paris.
  59. Gourieroux, C. (1992). Modeles ARCH et Applications Financieres, Economica, Paris.
  60. Hall, P. & Heyde, C. C. (1980). Martingale Limit Theory and its Applications, Acad. Press, New York.
  61. Hall, P., Kerkyacharian, G. & Picard, D. (1996). Adaptive minimax optimality of block thresholded wavelet estimators, Statistica Sinica. Submitted.
  62. Hall, P., Kerkyacharian, G. & Picard, D. (1996). Note on the wavelet oracle, Technical report, Aust. Nat. University, Canberra.
  63. Hall, P., Kerkyacharian, G. & Picard, D. (1996). On block thresholding for curve estimators using kernel and wavelet methods. Submitted.
  64. Hall, P., McKay, I. & Turlach, B. A. (1996). Performance of wavelet methods for functions with many discontinuities, Annals of Statistics 24: 2462-2476.
  65. Hall, P. & Patil, P. (1995). Formulae for mean integrated squared error of nonlinear wavelet-based density estimators, Annals of Statistics 23: 905-928.
  66. Hall, P. & Patil, P. (1995). On wavelet methods for estimating smooth functions, Bernoulli 1: 41-58.
  67. Hall, P. & Patil, P. (1996). Effect of threshold rules on performance of wavelet-based curve estimators, Statistica Sinica 6: 331-345.
  68. Hall, P. & Patil, P. (1996). On the choice of smoothing parameter, threshold and truncation in nonparametric regression by nonlinear wavelet methods, Journal of the Royal Statistical Society, Series B 58: 361-377.
  69. Hall, P. & Turlach, B. A. (1995). Interpolation methods for nonlinear wavelet regression with irregularly spaced design. Preprint.
  70. Hardle, W. (1990). Applied Nonparametric Regression, Cambridge University Press, Cambridge.
  71. Hardle, W., Klinke, S. & Turlach, B. A. (1995). XploRe - an Interactive Statistical Computing Environment, Springer, Heidelberg.
  72. Hardle, W. & Scott, D. W. (1992). Smoothing by weighted averaging of rounded points, Computational Statistics 7: 97-128.
  73. Hildenbrand, W. (1994). Market Demand, Princeton University Press, Princeton.
  74. Hoffmann, M. (1996). Methodes adaptatives pour l'estimation non-parametrique des coefficients d'une diffusion, Phd thesis, Universite Paris VII.
  75. Holschneider, M. (1995). Wavelets: an Analysis Tool, Oxford University Press, Oxford.
  76. Ibragimov, I. A. & Hasminskii, R. Z. (1980). On nonparametric estimation of regression, Soviet Math. Dokl. 21: 810-814.
  77. Ibragimov, I. A. & Hasminskii, R. Z. (1981). Statistical Estimation: Asymptotic Theory, Springer, New York.
  78. Johnstone, I. (1994). Minimax Bayes, asymptotic minimax and sparse wavelet priors, in S.Gupta & J.Berger (eds), Statistical Decision Theory and Related Topics, Springer, pp. 303-326.
  79. Johnstone, I., Kerkyacharian, G. & Picard, D. (1992). Estimation d'une densite de probabilite par methode d'ondelette, Comptes Rendus Acad. Sci. Paris, (1) 315: 211-216.
  80. Johnstone, I. & Silverman, B. W. (1997). Wavelet methods for data with correlated noise, Journal of the Royal Statistical Society, Series B 59: 319-351.
  81. Juditsky, A. (1997). Wavelet estimators: adapting to unknown smoothness, Mathematical Methods of Statistics 6: 1-25.
  82. Kahane, J. P. & Lemarie-Rieusset, P. (1995). Fourier Series and Wavelets, Gordon and Breach Science Publishers, Amsterdam.
  83. Kaiser, G. (1995). A Friendly Guide to Wavelets, Birkhauser, Basel.
  84. Katznelson, Y. (1976). An Introduction to Harmonic Analysis, Dover, New York.
  85. Kerkyacharian, G. & Picard, D. (1992). Density estimation in Besov spaces, Statistics and Probability Letters 13: 15-24.
  86. Kerkyacharian, G. & Picard, D. (1993). Density estimation by kernel and wavelet methods: optimality of Besov spaces, Statistics and Probability Letters 18: 327-336.
  87. Kerkyacharian, G., Picard, D. & Tribouley, K. (1996). Adaptive density estimation, Bernoulli 2: 229-247.
  88. Korostelev, A. P. & Tsybakov, A. B. (1993). Estimation of the density support and its functionals, Problems of Information Transmission 29: 1-15.
  89. Korostelev, A. P. & Tsybakov, A. B. (1993). Minimax Theory of Image Reconstruction, Springer, New York.
  90. Leadbetter, M. R., Lindgren, G. & Rootzen, H. (1986). Extremes and Related Properties of Random Sequences and Processes, Springer, N.Y.
  91. Ledoux, M. & Talagrand, M. (1991). Probability in Banach Spaces, Springer, New York.
  92. Lemarie, P. (1991). Fonctions a support compact dans les analyses multi-resolutions, Revista Mat. Iberoamericana 7: 157-182.
  93. Lemarie-Rieusset, P. (1993). Ondelettes generalisees et fonctions d'echelle a support compact, Revista Mat. Iberoamericana 9: 333-371.
  94. Lemarie-Rieusset, P. (1994). Projecteurs invariants, matrices de dilatation, ondelettes et analyses multi-resolutions, Revista Mat. Iberoamericana 10: 283-347.
  95. Lepski, O., Mammen, E. & Spokoiny, V. (1997). Optimal spatial adaptation to inhomogeneous smoothness: an approach based on kernel estimates with variable bandwidth selectors, Annals of Statistics 25: 929-947.
  96. Lepski, O. & Spokoiny, V. (1995). Local adaptation to inhomogeneous smoothness: resolution level, Mathematical Methods of Statistics 4: 239-258.
  97. Lepskii, O. (1990). On a problem of adaptive estimation in gaussian white noise, Theory Prob. Appl. 35: 454-466.
  98. Lepskii, O. (1991). Asymptotically minimax adaptive estimation I: Upper bounds. Optimal adaptive estimates, Theory Prob. Appl. 36: 682-697.
  99. Lepskii, O. (1992). Asymptotically minimax adaptive estimation II: Statistical models without optimal adaptation. Adaptive estimates, Theory Prob. Appl. 37: 433-468.
  100. Lintner, J. (1965). Security prices, risk and maximal gains from diversification, Journal of Finance 20: 587-615.
  101. Mallat, S. G. (1989). A theory for multiresolution signal decomposition: the wavelet representation, IEEE Transactions on Pattern Analysis and Machine Intelligence 11: 674-693.
  102. Marron, J. S., Adak, S., Johnstone, I., Neumann, M. & Patil, P. (1995). Exact risk analysis of wavelet regression. Manuscript.
  103. Marron, J. S. & Tsybakov, A. B. (1995). Visual error criteria for qualitative smoothing, Journal of the American Statistical Association 90: 499-507.
  104. Meyer, Y. (1990). Ondelettes et operateurs, Hermann, Paris.
  105. Meyer, Y. (1991). Ondelettes sur l'intervalle, Rev. Mat. Iberoamericana 7: 115-133.
  106. Meyer, Y. (1993). Wavelets: Algorithms and Applications, SIAM, Philadelphia.
  107. Misiti, M., Misiti, Y., Oppenheim, G. & Poggi, J. (1996). Wavelet TOOLBOX, The MathWorks Inc., Natick, MA.
  108. Moulin, P. (1993). Wavelet thresholding techniques for power spectrum estimation, IEEE. Trans. Signal Processing 42: 3126-3136.
  109. Nason, G. (1996). Wavelet shrinkage using cross-validation, Journal of the Royal Statistical Society, Series B 58: 463-479.
  110. Nason, G. & Silverman, B. W. (1994). The discrete wavelet transform in S, Journal of Computational and Graphical Statistics 3: 163-191.
  111. Nemirovskii, A. S. (1986). Nonparametric estimation of smooth regression functions, Journal of Computer and System Sciences 23(6): 1-11.
  112. Nemirovskii, A. S., Polyak, B. T. & Tsybakov, A. B. (1983). Estimators of maximum likelihood type for nonparametric regression, Soviet Math. Dokl. 28: 788-92.
  113. Nemirovskii, A. S., Polyak, B. T. & Tsybakov, A. B. (1985). Rate of convergence of nonparametric estimators of maximum likelihood type, Problems of Information Transmission 21: 258-272.
  114. Neumann, M. (1996). Multivariate wavelet thresholding: a remedy against the curse of dimensionality? Preprint 239. Weierstrass Inst. of Applied Analysis and Stochastics, Berlin.
  115. Neumann, M. (1996). Spectral density estimation via nonlinear wavelet methods for stationary non-gaussian time series, Journal of Time Series Analysis 17: 601-633.
  116. Neumann, M. & Spokoiny, V. (1995). On the efficiency of wavelet estimators under arbitrary error distributions, Mathematical Methods of Statistics 4: 137-166.
  117. Neumann, M. & von Sachs, R. (1995). Wavelet thresholding: beyond the Gaussian iid situation, in Antoniadis & Oppenheim (1995), pp. 301-329.
  118. Neumann, M. & von Sachs, R. (1997). Wavelet thresholding in anisotropic function classes and application to adaptive estimation of evolutionary spectra, Annals of Statistics 25: 38-76.
  119. Nikolskii, S. M. (1975). Approximation of Functions of Several Variables and Imbedding Theorems, Springer, New York.
  120. Nussbaum, M. (1985). Spline smoothing in regression models and asymptotic efficiency, Annals of Statistics 13: 984-97.
  121. Nussbaum, M. (1996). Asymptotic equivalence of density estimation and gaussian white noise, Annals of Statistics 24: 2399-2430.
  122. Ogden, T. (1997). Essential Wavelets for Statistical Applications and Data Analysis, Birkhauser, Basel.
  123. Ogden, T. & Parzen, E. (1996). Data dependent wavelet thresholding in nonparametric regression with change point applications, Computational Statistics and Data Analysis 22: 53-70.
  124. Oppenheim, A. & Schafer, R. (1975). Digital Signal Processing, Prentice-Hall, New York.
  125. Papoulis, G. (1977). Signal Analysis, McGraw Hill.
  126. Park, B. V. & Turlach, B. A. (1992). Practical performance of several data driven bandwidth selectors, Computational Statistics 7: 251-270.
  127. Peetre, J. (1975). New thoughts on Besov spaces, vol. 1, Technical report, Duke University, Durham, NC.
  128. Pesquet, J. C., Krim, H. & Carfantan, H. (1994). Time invariant orthogonal wavelet representation. Submitted for publication.
  129. Petrov, V. V. (1995). Limit Theorems of Probability Theory, Clarendon Press, Oxford.
  130. Pinsker, M. (1980). Optimal filtering of square integrable signals in gaussian white noise, Problems of Information Transmission 16: 120-133.
  131. Pollard, D. (1984). Convergence of Stochastic Processes, Springer, New York.
  132. Raimondo, M. (1996). Modelles en ruptures, Phd thesis, Universite Paris VII.
  133. Rioul, O. & Vetterli, M. (1991). Wavelets and signal processing, IEEE Signal Processing Magazine 8(4): 14-38.
  134. Rosenthal, H. P. (1970). On the subspaces of spanned by sequences of independent random variables, Israel Journal of Mathematics 8: 273-303.
  135. Sharpe, W. (1964). Capital asset prices: a theory of market equilibrium under conditions of risk, Journal of Finance 19: 425-442.
  136. Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis, Chapman and Hall, London.
  137. Spokoiny, V. (1996). Adaptive hypothesis testing using wavelets, Annals of Statistics 25: 2477-2498.
  138. Stein, C. M. (1981). Estimation of the mean of a multivariate normal distribution, Annals of Statistics 9: 1135-1151.
  139. Stein, E. & Weiss, G. (1971). Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton.
  140. Stone, C. J. (1980). Optimal rates of convergence for nonparametric estimators, Annals of Statistics 8: 1348-60.
  141. Stone, C. J. (1982). Optimal global rates of convergence for nonparametric regression, Annals of Statistics 10: 1040-1053.
  142. Strang, G. & Nguyen, T. (1996). Wavelets and Filter Banks, Wellesley-Cambridge Press, Wellesley, MA.
  143. Tribouley, K. (1995). Practical estimation of multivariate densities using wavelet methods, Statistica Neerlandica 49: 41-62.
  144. Tribouley, K. & Viennet, G. (1998). Adaptive estimation of the density in a –mixing framework., Ann. de l'Institut H. Poincare, to appear.
  145. Triebel, H. (1992). Theory of Function Spaces II, Birkhauser Verlag, Basel.
  146. Tsybakov, A. B. (1995). Pointwise and sup-norm adaptive signal estimation on the Sobolev classes. Submitted for publication.
  147. von Sachs, R. & Schneider, K. (1996). Wavelet smoothing of evolutionary spectra by non-linear thresholding, Journal of Applied and Computational Harmonic Analysis: 268-282.
  148. Wang, Y. (1995). Jump and sharp cusp detection by wavelets, Biometrika 82: 385-397.
  149. Wang, Y. (1996). Function estimation via wavelet shrinkage for long-memory data, Annals of Statistics 24: 466-484.
  150. Young, R. K. (1993). Wavelet Theory and its Applications, Kluwer Academic Publishers, Boston/Dordrecht/London.

  В оглавление книги \ К предыдущему разделу


О получении локальных копий сайтов
  I Всероссийская научная конференция "Проектирование научных и инженерных приложений в среде MATLAB" (май 2002 г.)
  II Всероссийская научная конференция "Проектирование научных и инженерных приложений в среде MATLAB" (май 2004 г.)
На первую страницу \ Сотрудничество \ MathWorks \ SoftLine \ Exponenta.ru \ Exponenta Pro   
E-mail: info@matlab.ru   
  Информация на сайте была обновлена 16.08.2004 Copyright 2001-2004 SoftLine Co 
Наши баннеры  

 

Rambler's Top100    TopList