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Abstract 

Climate is a complicated system containing four topics which are temperature, 

rainfall, atmospheric pressure and wind. Analyzing climate well can help people 

predict weather situation and avoid weather hazards. In the recent years, climate 

changing causing many disasters such as floods, droughts and heat waves, make a 

tremendous threat to human beings. Therefore, we need a strongly mathematic model 

to deal with such large data and abstract useful information. Several linear 

mathematical models have been applied to climate data, but the results are not so 

decisive and crucial because climate data are non-linear and non-stationary time series 

data. Fortunately, an adaptive mathematic model, the Hilbert-Huang transform (HHT), 

developed by Huang recently seems to be able to solve the problem. In this paper, the 

first part is an introduction to the Hilbert-Huang transform, and the second part is the 

result and discussion of experiment. 

 

1. Hilbert-Huang Transform 

In this paragraph, we will make an introduction to the Hilbert-Huang transform 

followed by the brief description of the Hilbert transform, Hilbert spectrum, intrinsic 

model function and empirical model function. The Hilbert-Huang transform is 

composed of these parts, and then some mathematic problems associated with the 

Hilbert-Huang transform are discussed. 

 

1.1. Introduction 

Most traditional analysis methods are based on linear and stationary assumption [2]. 

For example, the wavelet analysis, the Wigner distribution and the STFT were 



designed for linear but non-stationary data. Additionally, various non-linear time 

series analysis was designed for non-linear but stationary and deterministic systems. 

However, in either natural or anthropogenic environment, most systems are both 

non-linear and non-stationary. For non-linear and non-stationary systems, adaption is 

definitely necessary. Adaption means that the mathematic model has to be 

data-dependent. The biggest difference from the Hilbert-Huang transform and 

traditional analysis methods is that the Hilbert-Huang transform is an empirically 

based data-analysis method. The Hilbert-Huang transform is an adaptive way to 

produce physically meaningful representation of data from non-linear and 

non-stationary system, especially for time-frequency-energy representation. Powerful 

as the Hilbert-Huang transform is, the advantage of being adaptive has a price. There 

is no complete theoretical foundation. In order to make the Hilbert-Huang transform 

more robust, there exists some mathematical problem to be solved. Some of the 

problems have been solved, but the other parts still need more effort to be carried on.  

 

1.2. The Hilbert-Huang Transform 

This new approach, the Hilbert-Huang transform, is developed by the need to 

analyze the non-linear and non-stationary data. Periodicity is a typical characteristic 

of non-stationary process, and we can derive it from its intra-wave frequency form, 

which indicates the instantaneous frequency changes within one oscillation cycle. As 

an example, a simple non-linear system is showed, given by the non-dissipative 

Duffing equation as 
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Where ε is a parameter not necessary small, and γ is the amplitude of a periodic 

forcing function with frequency ω. If the parameter ε is zero, the system turns into a 

linear system. However, if the parameter ε is not zero, the system would be a 

non-linear system. More importantly, if the parameter ε is not small enough, it would 

cause bifurcations and chaos, and then this equation is not useful. By rewriting the 

equation into a slightly different form as 
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In this form, the quantity within the parenthesis can be considered as a variable spring 

constant or a variable pendulum. In the pendulum system, frequency changes from 

time to time, and location to location. In 1998, Huang et al. found that intra-wave 

frequency variation is crucial to non-linear system. In the traditional Fourier transform, 

the intra-wave frequency variation cannot be depicted, except by resorting to 

harmonic. Thus, any non-linear distorted waveform can be regarded as ―harmonic 



distortions.‖ Harmonic distortions are a mathematic artificial consequence of 

imposing a linear structure on a non-linear system. They may have mathematical 

meanings but physical meanings (Huang et al. 1999). Therefore, the physically 

meaningful way to describe a non-linear system is instantaneous frequency, which 

will reveal the intra-wave frequency modulations.  

The Hilbert transform is the easiest way to compute instantaneous frequency, 

through which the complex conjugate ( )y t of any real value function ( )x t of pL class 

can be determined by 
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In which the PV indicates the principle value of singular integral, and the analytic 

signal is defined as 
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( )a t is the instantaneous amplitude, and ( )t is the phase function, and the 

instantaneous frequency is simply 

d

dt


  .                                (1.6) 

  In fact, using the Hilbert transform directly would cause a problem, which a 

sensible instantaneous frequency cannot be found. As a result, the Hilbert transform 

was applied to narrow band-passed signal, which is narrow-banded with the same 

number of extrema and zero-crossings. However, filtering a signal into a 

narrow-banded signal is a linear operation, so filtered data will be stripped of their 

harmonics, and the result will be a distortion of a waveform. The filtering process is 

called the empirical mode decomposition method (EMD). 

 

1.2.1. The Empirical Mode Decomposition Method (The Sifting Process) 

Compared to traditional analysis method, the Hilbert-Huang transform is intuitive, 

direct, and adaptive, with a posteriori-defined basis, from the decomposition method, 

based on and derived from the data. The decomposition has an assumption that any 

data consists of different simple intrinsic models of oscillations. Each intrinsic mode, 

no matter linear or not, represents an oscillation, which will have the same number of 

extrema and zero-crossings, and then the oscillation will be symmetric with respect to 

the local mean. Usually, the data may have many different oscillations which can be 

represented by the intrinsic mode functions (IMF) with following definition: 



 

                      Figure 1.1: The test data. 

 

(a) in the whole dataset, the number of extrema and the number of zero-crossings 

must either equal or differ at most by one, and 

(b) at any point, the mean value of the envelope defined by the local maxima and the 

envelope defined by the local minima is zero. 

 

An IMF is much more general than an oscillation mode because it has a variable 

amplitude and frequency as a function of time. According to the definition for the IMF, 

we can decompose any function as follows [4] and take Fig. 1.1 as an example. 

(1) First, find all the local maxima extrema of ( )x t  

(2) Interpolate (cubic spline fitting) between all the maxima extrema ending up with 

some upper envelope max ( )e t . 

(3) Find all the local minima extrema. 

(4)Interpolate (cubic spline fitting) between all the minima extrema ending up with 

some lower envelope min ( )e t . 

 

 



(5) Compute the mean envelope between upper envelope and lower envelope shown 

in Fig. 1.2 

min max
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                           (1.7) 

(6) Compute the residue 1h shown in Fig. 1.3 

                        1 1( )h x t m                                (1.8) 

(7) Here, a critical decision must be made: the stoppage criterion. If this squared 

difference kSD is smaller than a predetermined threshold, the sifting process will be 

stopped. 
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Figure 1.2: The data upper and lower envelopes defined by local maxima and minima, 

and the mean value of two envelopes. 



 

                      Figure 1.3: The data and 1h . 

Ideally, 1h should satisfy the definitions of an IMF, so it should be symmetric and 

have all maxima positive and all minima negative. However, the hump on slope may 

become a local maximum after the first round of sifting, and then the residue may not 

satisfy the definitions of an IMF. The sifting process has two purposes: to eliminate 

riding waves, and to make the wave profiles more symmetric. The first purpose is 

designed for the Hilbert transform to give a meaningful instantaneous frequency, the 

second purpose is designed in case the neighboring wave amplitude have too large 

disparity. For these two purposes, the sifting process should be repeated until to 

extract the residue satisfying the definition of an IMF. In the next step, 1h is treated as 

a new data; then, 

11 1 11h h m                             (1.10) 

After repeating sifting process, show in Fig. 1.4 (a) and (b), up to k times, 1kh

becomes an IMF; that is, 

1 1( 1) 1k k kh h m                            (1.11) 



 

Figure 1.4: (a,top) Repeated sifting steps with 1h  and 2m . (b,bottom) Repeated 

sifting steps with 2h  and 2m . 



 

Figure 1.5: The first IMF component 1c  after 12 steps. 

Then, it is designated as  

1 1kc h                                (1.12) 

the first IMF component from the data shown in Fig. 1.5. 

However, there are two critical problems needed to be solved: first, the problem 

how small is small enough needs an answer. Second, this criterion does not depend on 

the definition of an IMF. These two problems mean that nothing guarantees that the 

function will have the same number of zero-crossings and extrema. If readers are 

interested in how to decide times of sifting steps, there are many researches 

developed. 

  Now we assume that a stoppage criterion was selected, and that the first IMF 1c was 

found. 1c should contain the finest scale or the shortest period component of the signal. 

The rest of the data is that, 

1 1( )r x t c                           (1.13) 



Since the residue 1r still contains longer period variations in the data, as show in Fig. 

1.6, it is treated as the new data and we repeat the same sifting process to it. The result 

is  

2 1 2r r c                             

                                                               (1.14) 

                             
1n n nr r c                           

Fig 1.7 shows the flowchart of IMF computation. No matter how small the component 

nc  or the residue 
nr  is, or no more IMFs can be extracted, the final residue still can 

be different from zero. If the data have a trend, the final residue should be that trend. 

By summing up (1.12) and (1.13), we obtain that  
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              Figure 1.6: The original data and the residue 1r  

 



 

Figure 1.7: The flowchart of EMD 

Thus, an n-empirical mode decomposition is achieved, and the residue rn is obtained, 

which can be either the mean trend or a constant. The components of the EMD are 

usually physically meaningful, for the characteristic scales are defined by the physical 

data. In the second part, the aspect will be introduced through the temperature 

changing in the climate.   

 

1.2.2. The Hilbert Spectral Analysis 

After the empirical mode decomposition, we can apply the Hilbert transform to 

each IMF component, and compute the instantaneous frequency according to 

(1.3)-(1.6). Consequently, the original data can be expressed as the real part in the 

following form: 
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1

n
x t R a t i t dtj j

j
  


 .                  (1.16) 

There are two reason that the residue rn should be left out. First, the energy involved 

in the residual trend representing a mean offset could be overpowering. Second, we 

are more interested in obtaining the information contained in the other low-energy but 



clearly oscillatory components rather than the uncertainty of the longer trend. 

  Equation (1.16) can be modified into a Fourier representation as 
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with both aj and ωj as constants. In equation (1.17), the variable amplitude and the 

instantaneous frequency have not only improve the efficiency of expansion, but also 

enabled the expansion to accommodate non-linear and non-stationary data. Therefore, 

the restriction of the constant amplitude and fixed frequency of the traditional Fourier 

expansion have been conquered, with a variable amplitude and frequency form, which 

is called ―Hilbert amplitude spectrum‖ or ―Hilbert spectrum‖. If amplitude is squared, 

we obtain the Hilbert energy spectrum. 

  With the Hilbert Spectrum defined, we can also define the marginal spectrum h(ω) 

as  

0

( ) ( , )

T

h H t dt    .                         (1.18) 

The marginal spectrum offers a measure of the total energy distribution from each 

frequency. 

  The combination of the empirical mode decomposition and the Hilbert spectral 

analysis is known as the Hilbert-Huang transform. Different from the traditional 

analyses, the Hilbert—Huang transform is developed for non-linear and 

non-stationary data. There is a comparative summary of the Fourier transform, the 

wavelet transform, and the Hilbert-Huang transform given in the following table: 

Table 1.1: The comparison between the HHT, the wavelet transform, and the FT 

 Fourier Wavelet Hilbert 

Basis a priori a priori Adaptive 

Frequency convolution: 

global 

uncertainty 

convolution: 

regional 

uncertainty 

differentiation: 

local 

certainty 

Presentation energy-frequency energy-time-frequency energy-time-frequency 

Non-linear no no yes 

Non- 

stationary 

no yes yes 

Feature 

extraction 

No discrete: no 

continuous: yes 

yes 

Theoretical 

base 

theory complete theory complete empirical 



According to Table 1.1, we found that the Hilbert-Huang transform is a powerful 

tool to analyze data from non-linear and non-stationary system. The Hilbert-Huang 

transform is an adaptive process and the instantaneous frequency is derived by 

differentiation rather than convolution. Therefore, the Hilbert-Huang transform is not 

limited by uncertainty principle. Besides, the Hilbert-Huang transform is used for 

feature extraction because it can represent result in time-frequency-energy 

distribution. 

 

1.3. Mathematical problems related to related the HHT 

The Hilbert-Huang transform is developed in 1999. However, there are still many 

mathematical and theoretical problems to be solved to this day. Here are some main 

problems as following: 

a. Adaptive data analysis methodology in general 

b. Non-linear system identification methods 

c. Spline problems 

d. Optimization problems 

1.3.1. Adaptive Data-Analysis Methodology 

As we discussed at the beginning, the traditional analysis methods are designed for 

linear and stationary data. In this way, there are many restrictions for applying these 

methods to man-made or natural systems because most systems are non-linear and 

non-stationary. Therefore, we have to design a analysis method based on data. Under 

this paradigm, there is no solid foundation which has been developed until today. In 

the recent years, more and more scientists pay attention to adaptive analysis methods 

and developed some methods. However, most of them depend on feedback, so they 

are confined to stationary processes. As the result, how to design an adaptive model is 

still challenging. 

 

1.3.2. Non-linear System Identification 

In traditional way, we compute the relation between input and output to identify 

whether the system is linear or not. For some ideal cases, it may work out. However, 

in the most man-made and natural systems, we cannot control input and output. The 

only data we have is the output from an unidentified system. In the above lecture, 

Huang indicated that an IMF may be an index for nonlinearity. However, it is still not 

enough to distinguish a quasi-linear from a truly nonlinear system. An effective 

method for nonlinear-system identification is urgently needed. 



1.3.3. Spline Problems 

In the sifting process, we use spline fitting to connect local maxima and local 

minima. However, among all the spline methods, which one is the best for the 

interpolation? The answer is critical. In the experiment, cubic spline applied to the 

sifting process is more appropriate. If lower-order spline is used, the envelop is not 

smooth and cling enough. If higher-order spline is used, it is against the spirit of 

adaptation. For adaptation, we try not to add too many parameters to analysis models. 

Higher-order spline needs more parameters and costs more computation time, so it is 

not suitable.  

 

1.3.4. The Optimization Problem 

As we discusses, if we choose different splines, we will get different sets of IMFs. 

If we use different stoppage criterion, we will get different sets of IMFs. What is the 

relation between these sets? Which set contains more physical meaning? 

Consequently, how to optimize the sifting process to get the best IMF set is an 

important question. 

 

2. Analysis of Climate by the HHT 

Climate is a complicated natural system, which contains temperature, wind, 

atmospheric pressure, and rainfall. Each of these four topics plays an important role in 

the global environment. In this paragraph, we take temperature change as the 

experiment using the Hilbert-Huang transform. 

 

2.1. Introduction 

Although people have researched climate for many years, climate as a complex 

system still challenges our knowledge, leaving us with the problems that deal with 

sparse data, insufficient methods, limited models, and unexplained physical processes 

[3]. Nowadays, global warming and greenhouse effect are most popular issues causing 

huge threat to lives and properties. The global mean temperature has increased by 

0.6
o
C over the last century and resulted in many changes to the human and animal 

community. In the recent years, researchers found that global warming is the reason of 

some natural disasters, such as floods, drought, and heat waves which are more 

frequent than ever. Therefore, people and government have spent much resource on 

climate analysis. Several linear statistical models have been applied to climate data, 

but the answer is not satisfied because of the nonlinearity and non stationary of  



 

Figure 2.1: IMF components and final residue of daily maximum temperature 

 

climate data. A new analysis method, the Hilbert-Huang transform which is designed 

for non-linear and non-stationary data, is applied to climate data. Although it lacks of 

full theory, the Hilbert-Huang transform still offers a better understanding of the 

variability of the region climate measured by the changes in the surface air 

temperature. 

 

2.2. Experiments and Discussion 

The empirical mode decomposition method is applied to the 15 years daily 

maximum and minimum temperature data. The EMD results are shown in the 

following Fig. 2.1 and Fig. 2.2. These two figures show that strong inter-annual  



 

Figure 2.2: IMF components and final residue of daily minimum temperature 

 

fluctuations exists both the maximum and minimum temperature. The residues 

indicate that the trend of daily maximum temperature is going down, and the trend of 

daily minimum temperature is going up. The residual series are slightly dependent 

which may be due to small underlying trends caused by climate change or El Nino, 

which happens once every four years. After EMD, each IMF is applied to the Hilbert 

spectral analysis to calculate the instantaneous frequency. The Hilbert spectrum is a 

time-frequency-energy distribution, and it is easy to clearly observe the frequent and 

non-frequent temperature change at any time over the entire data length. The most 

popular form to present the Hilbert spectrum is the color map presentation 

corresponding to the energy in dB shown in Fig. 2.3. 



 

Figure 2.3a: Hilbert spectrum of maximum temperature 

 

Figure 2.3b: Hilbert spectrum of minimum temperature 

 

 

 



2.2.1. IMF Component and its Probability Distribution  

In the marginal spectrum, the energy at the frequency ω means there is a higher 

likelihood that an oscillation with such a frequency exists. The probability distribution 

of individual IMFs is shown in Fig. 2.4. According to the Central Limit Theorem, the 

probability density function is approximately normal distribution when the number of 

sample is large. The deviation grows as the mode number increases because there are 

fewer oscillations in the higher frequency modes. The IMFs isolate physical processes 

of various time-scales and also give the temporal variation without resorting to the 

linear assumption. Therefore, IMFs can be effectively used to construct the 

time-frequency distribution in the form of Hilbert spectrum. 

 

Figure 2.4a: Probability distribution of the IMFs of maximum temperature  

 

Figure 2.4b: Probability distribution of the IMFs of minimum temperature 

 



2.2.2. Reconstruction, Orthogonality and Correlation of IMFs   

As shown in (1.15), data can be linearly decomposed into a set of IMFs if the EMD 

method is ideal. Therefore, data can be reconstructed by adding of all IMF 

components with negligible error given in Fig. 2.5. 

 

Fig. 2.5: Reconstruction from IMFs of maximum and minimum temperature; the 

black one is the original data and green one is the stepwise reconstruction. 



The IMFs from an efficient EMD method should be approximately orthogonal to 

each other. Fig. 2.6 shows orthogonality values between all pairs of IMFs of 

maximum and minimum temperature. The x-axis and the y-axis represent the indices 

of IMFs, and the z-axis represents the index of orthogonality. In other words, 

orthogonality can be used to detect whether the EMD is efficient enough or not. 

 

 

Figure 2.6a: Orthogonality between IMFs of maximum temperature 

 

 

Figure 2.6b: Orthogonality between IMFs of minimum temperature 

 



2.2.3. Some Parameters of IMF Components 

  Some parameters from IMF components can help us to analyze the 15 years daily 

temperature data given in Table 2.1 and Table 2.2. The mean period is calculated as 

the total number of extrema divided by the number of data samples. The percentage of 

energy content represents that how much energy each IMF contains. The variance 

indicates the amount if information of each IMF. The iteration offer the computational 

cost of each IMF. This paper will not discuss what these values mean in climate 

because it is highly relative to the meteorology. 

Table 2.1: Some parameters of EMD for maximum temperature 

IMF Mean Period % of Energy % of Variance No. of Iteration 

IMF1 0.3161 6.5599 3.9329 83 

IMF2 0.1604 7.3642 4.9056 58 

IMF3 0.0890 7.2141 4.5844 51 

IMF4 0.0482 8.4089 6.4040 20 

IMF5 0.0273 5.6837 2.6696 36 

IMF6 0.0132 9.4468 9.0876 17 

IMF7 0.0050 20.9887 31.0227 15 

IMF8 0.0030 20.7931 31.2409 7 

IMF9 0.0016 6.9380 4.3836 16 

IMF10 0.0009 4.7700 1.5088 7 

IMF11 0.0004 1.8325 0.2599 12 

 

Table 2.2: Some parameters of EMD for minimum temperature 

IMF Mean Period % of Energy % of Variance No. of Iteration 

IMF1 0.3144 5.6123 2.1344 39 

IMF2 0.1599 4.8425 1.5340 252 

IMF3 0.0931 5.6961 2.1701 20 

IMF4 0.0483 5.3102 1.7632 21 

IMF5 0.0244 4.8265 1.3867 19 

IMF6 0.0109 6.8594 2.7849 24 

IMF7 0.0039 29.4860 48.7564 12 

IMF8 0.0021 25.1336 36.0538 11 

IMF9 0.0012 5.8507 1.6981 7 

IMF10 0.0005 6.3827 1.7184 4 

 

 

 



3. Conclusion 

Different from traditional analysis, such as Fourier transform, the Hilbert-Huang 

transform is developed for non-linear and non-stationary data, so it is should be 

data-dependent and adaptive. Although the Hilbert-Huang transform still lacks of 

complete theory, it is presently the best analysis method for non-linear and 

non-stationary systems. Empirical mode decomposition can be useful time series 

analysis tool, particularly for analyzing the climate record of the atmosphere beyond 

annual time scales. Global climate phenomenon is usually separated in time, so the 

time series analysis is more proper for climate than spatial methods. Furthermore, 

trends, instantaneous frequency and amplitude modulation, which come from IMF 

components, make EMD especially appropriate for climate. However, those 

predictions of climate by the Hilbert-Huang transform is not mature enough that there 

are still many natural disasters, such as floods, droughts, and heat waves, happening 

around the world. As a result, we still have many problems to conquer. 
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