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Null Space Pursuit: An Operator-based Approach to
Adaptive Signal Separation

Silong Peng and Wen-Liang Hwang

Abstract—The operator-based signal separation approach uses
an adaptive operator to separate a signal into additive subcom-
ponents. The approach can be formulated as an optimization
problem whose optimal solution can be derived analytically.
However, the following issues must still be resolved: estimating the
robustness of the operator’s parameters and the Lagrangian mul-
tipliers, and determining how much of the information in the null
space of the operator should be retained in the residual signal. To
address these problems, we propose a novel optimization formula
for operator-based signal separation and show that the parameters
of the problem can be estimated adaptively. We demonstrate the
effectiveness of the proposed method by processing several signals,
including real-life signals.

Index Terms—Adaptive signal separation, operator-based, op-
timal parameter estimation.

I. INTRODUCTION

I N recent years, the single-channel signal separation
problem, which involves decomposing a signal into its

coherent subcomponents, has attracted a great deal of attention
because it affects many applications. Typical single-channel
signal separation approaches decompose a signal into a mixture
of several additive coherent subcomponents [1]–[3], [11], [14],
[18], [19]. The methods used to separate signals vary because
different subcomponents are used to construct the signals. For
example, in the empirical mode decomposition (EMD) ap-
proach [11], [17], [20], an oscillatory signal is decomposed into
a sum of intrinsic mode functions (IMFs); and in the matching
pursuit (MP) approach [3], [6], a signal is decomposed into
a sum of time-frequency atoms. The following three recently
proposed approaches are of particular interest to us.

1) Sparsity-Based Approach: In a series of papers, the
sparsity-based approach (also called morphological component
analysis) was developed to separate textures from the piecewise
smooth components [5], [18]. Assume that a signal is decom-
posed into a sum of and . Two dictionaries, and , are
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associated with and respectively, such that (respectively,
) can be represented by (respectively, ) with sparse

coefficients (the number of non-zero coefficients is small), but
it cannot be sparsely represented by (respectively, ).
Given the two dictionaries and , the separation of can
be achieved by solving the following optimization problem:

(1)

where , , and is a Lagrange
term. Starck et al. [18] use the approach to separate an image
into a cartoon component and a texture component. The two dic-
tionaries used in [18] are the wavelet family for cartoon images
and the Gabor family for textures. In general, the dictionaries
employed can be learned from a training process.

2) Norm-Based Approach: Vese et al. [19] assume that the
components and lie in different metric spaces with norms

and , respectively. To separate the signal into
and , it is necessary that is small and is large, and

is small and is large. To find and , the following
optimization problem must be solved:

(2)

where is a Lagrange term. The authors show that the
cartoon and texture components of an image can be separated
by their approach. Following Rudin, Osher, and Fatemi [9], the
bounded variation (BV) is chosen as the space for cartoon im-
ages; and following Y. Meyer [12], three spaces, ,

and , are proposed for texture
images. Details of the definition of the spaces and their corre-
sponding norms can be found in [7], [12], and [19]. The ap-
proach can be extended to obtain a hierarchical decomposition
of images for denoising, deblurring, and segmentation purposes
[13].

Although the sparsity- and norm-based methods are based on
an ingenious idea and derive solutions according to advanced
mathematical techniques, they cannot separate many signals
successfully. For example, if a signal is a sum of narrow band
signals, it is very difficult to find sparse dictionaries or general
spaces to separate the narrow band subcomponents effectively.
In fact, any narrow band signal is a sparse representation of the
dictionary of the DCT; therefore, all the narrow band compo-
nents of a signal share the same sparse dictionary. To separate
the fine-structured components of a signal, such as narrow band
components, one needs a signal separation method that can
derive the operations based on the structures of a signal, after
which the operations are used to separate the signal into the
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desired components. This was one of the motivations for the
development of the operator-based approach.

3) Operator-Based Approach: The operator-based approach
separates into and so that is in the null space
of an operator . The subindex, , of the operator indicates that
the operator can be estimated from the signal . The following
optimization method is used to estimate the signal that mini-
mizes the problem:

(3)

where is the residual signal, and is a differential operator
that regulates . Minimizing the term indicates
that is in the null space of the operator . The solution
of (3) can be derived analytically:

(4)

In [14], we define a class of local narrow signals in the null space
of the differential operator as follows:

(5)

where is a square summable sequence belonging to
.

The operator-based approach can be used to decompose the
residual signal repeatedly. Hence, can be represented as the
summation of subcomponents in the null spaces of a sequence of
operators derived from the corresponding sequence of residual
signals. There are similarities between the operator-based ap-
proach, the MP approach and the EMD approach, which we
elaborate on in Section II. Here we remark that, similar to the
approach in [13], we define as the norm of signal to
the null space of operator . As a result, (3) can be written as

, which is a form of (2).
When an operator-based method is applied to a real-life

signal, it is usually difficult to determine the Lagrangian mul-
tiplier in (3). In addition, during the optimization of the
equation, most of the signal in the null space of is removed
from . A small portion of is required to regulate , so it
is retained in the residual signal . However, we found that,
for many signals, better solutions can usually be obtained if
we remove less information from the null space of than that
required by (3). This suggests that we should use a less greedy
approach so as to preserve more information in the null space
of in the residual signal. Thus, we propose the following
solution to the optimization problem:

(6)

The first and the second terms of (6) correspond to the terms
in (3). The parameter in the third term of (6) determines the
amount of to be retained in the null space of ; and the
last term is the Lagrange term for the parameters of the operator

.

In this paper, we show that the optimal solution of (6) can be
derived analytically, and the parameters of the operator as
well as the parameters and in the equation can be estimated
adaptively. The proposed algorithm is called the Null Space Pur-
suit algorithm. We demonstrate the algorithm’s robustness and
accuracy in decomposing noisy signals as well as its efficacy
when applied to some real-life signals.

The remainder of this paper is organized as follows. In
Section II, we review the operator-based approach and compare
it with the MP and the EMD approaches. In Section III, we
present the proposed Null Space Pursuit algorithm. Exper-
iments on simulated and real-world signals are reported in
Section IV. We then summarize our conclusions in Section V.

II. COMPARISON WITH THE MP AND EMD APPROACHES

In this section, we review the operator-based approach pro-
posed in [14] and compare it with the MP approach and the
EMD approach. We show that the operator-based approach can
be regarded as a generalization of the MP approach, and that a
particular case of EMD decomposition is in the null space of an
adaptive operator.

A. Operator-Based Approach

The operator-based approach uses adaptive operators to de-
compose a signal into additive subcomponents. The basic oper-
ation involves estimating an operator from a signal and de-
composing the signal into two components, and , such that

is in the null space of the operator and is the residual signal.
The operation can be formulated as an optimization problem by
(3).

In [14], two types of local operators are used: an integral op-
erator and a differential operator. The differential operator is

(7)

where is the instantaneous frequency of the component
[8]. It is estimated from the positions of the local extrema of

the signal . The null space of the above differential operator
contains the narrow band signal , where is
a polynomial of order 1.

The steps of the signal decomposition algorithm proposed in
[14] are as follows.

Step 1) Input the signal and the stopping threshold . Set
and .

Step 2) Estimate the instantaneous frequency from and
derive the operator by (7).

Step 3) Choose a value and use (4) to obtain :

(8)

Step 4) If , then let and
. Go to Step 2.

In Step 2, the instantaneous frequency of a signal is estimated
from the locations of its local extrema. However, in some signals
comprised of two additive subcomponents, the correct instan-
taneous frequency of each subcomponent cannot be estimated
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Fig. 1. Top row: Signal ���� � ������� � ���	� ����
�� with � � ��� 
��.
Middle row: the left-hand and right-hand frames show, respectively, the ex-
tracted signal and the error signal derived by setting � � ����. Bottom row:
the left-hand and right-hand frames show, respectively, the extracted signal and
the error signal derived by setting � � ������. The extracted components vary
because we use different � values.

accurately from the extrema of the signals [14]. Moreover, se-
lection of the value of in Step 3 is difficult. In the following,
we describe a simple signal that is formed by summing two
single-tone signals, as shown in the top subfigure of Fig. 1. The
two subfigures in the middle row of the figure are, respectively,
the extracted component and the error of the component if we
set ; while the bottom subfigures show, respectively,
the extracted component and the error of the component if we
set instead. An automatic and robust estimation of

is extremely important because if an inappropriate value is
chosen in one iteration, it will affect the residual signal and be
propagated to subsequent iterations. The above algorithm de-
composes into a sum of subcomponents, which are in the null
spaces of a sequence of operators. Then, we have

(9)

where is in the null space of the operator , which is de-
rived from . The procedure is similar to that of the
MP algorithm, where the basis that best matches the signal is se-
lected, and the component that the signal projects onto the basis
is extracted from the signal in each iteration of the algorithm.
The procedure is also similar to that of the EMD algorithm,
where an IMF derived from the signal is extracted from the
signal in each iteration. Next, we compare the operator-based
approach with the MP and EMD approaches.

B. Comparison With the MP Approach

The MP algorithm decomposes a signal into a linear expan-
sion of the bases, , in an overcomplete dictionary by a suc-
cession of greedy steps [3]. The signal is first decomposed
into

where , is the residual
signal after approximating in the direction of , and

. The dictionary element, , combined with
the inner product value is called an atom. The matching
pursuit algorithm then decomposes the residual by pro-
jecting it on to the basis functions of , as was done for .
After iterations, we have

(10)

where is approximated by the number of atoms and the
residual .

Next, we show that the operator-based approach can be re-
garded as a generalization of the MP approach. We associate
each with an operator such that

(11)

Since is a local basis, is a local operator. In addition,
is a singular local operator and is in the null space of
because

(12)

Thus, the MP algorithm can be regarded as using the dictionary
of operators to decompose a signal. It applies
each operator in the operator dictionary to a signal, and selects
the operator that satisfies

(13)

Let be the above solution. Then, based on the definition of
in (11), we have

(14)

Because has the minimum norm, has the maximum
norm. Thus, the MP algorithm greedily selects the operator that
can remove the most components from the null space of the
optimal operator in the signal.

C. Comparison With the EMD Approach

The EMD algorithm decomposes a signal into a sum of in-
trinsic mode functions (IMFs). Each IMF must satisfy two con-
ditions: 1) the number of extrema and the number of zero-cross-
ings can differ by one, at most; and 2) the mean value of the en-
velopes defined by the local maxima and the local minima must
be zero. An IMF can be obtained by the following sifting pro-
cedure. Given a signal , the procedure first finds the extremal
points, and then computes the mean value of the envelopes
of the extrema. If the mean value is not zero, the procedure is
applied to the new signal . The procedure is repeated sev-
eral times until the mean value of a signal is zero and the signal
is an IMF. The sifting operation of the EMD is defined and de-
rived from the local extrema of a signal, while the operator of
the operator-based approach can be derived from a regulariza-
tion approach by solving an optimization problem. Usually, the
latter approach obtains a better result when the signal is con-
taminated with noise. Examples of the signal separation results
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derived by the operator-based and the EMD algorithm are com-
pared in [4].

The approach described in [14] considers a special case of
IMF computation in which the positions of a signal’s local ex-
trema are invariant during the sifting process. In such cases,
calculation of the mean value during the process can be rep-
resented as a linear operator, A, for all iterations. Let us assume
that the sifting process converges after iterations. Since the
mean envelope derived from the extrema of is , we have

. According to the definition of the IMF,
; thus, is in the null space of the operator

and is in the null space of . Note that the
derivation can still be applied when the first few iterations of
the extrema positions vary, but the rest of the iterations are in-
variant during the sifting process.

III. NULL SPACE PURSUIT

In the previous sections, we reviewed the operator-based ap-
proach proposed in [14] and identified some difficulties that
have yet to be resolved. To address those difficulties, we pro-
pose a modification of the approach and show that the new pa-
rameters can be estimated adaptively at the same time.

If we set the regulation operator in (3) as the identity ma-
trix, we obtain

(15)

This is essentially a greedy approach since (15) extracts the most
suitable component in the null space of from by mini-
mizing . It can remove more than enough information from
the null space of in the residual signal. Let us compare the
following two decompositions of the signal : , and

, where is in the null space of ,
and . In the first case, is extracted and, at the next itera-
tion, the operator is estimated from the residual ; and in the
second case, is extracted and, at the next iteration, the
operator is estimated from the residual signal . The
operators and are not necessarily the same. Thus, we pro-
pose using a controlled greedy approach based on the following
formula:

(16)
where denotes the leakage parameter and the last term is the
Lagrange term of the parameters of the operator . We call
the leakage parameter because its value determines the amount
of information about that is retained in the null space of

.
To demonstrate the proposed approach, we choose the fol-

lowing differential operator:

(17)

If the input is a single-tone signal , then
implies that the parameters are the square of the
instantaneous frequency of the signal. To ensure that is a
smooth function, we choose the second differential operator

in and the parameter for the Lagrangian term .
The optimization problem in (16) then becomes

(18)

To separate a multi-tone signal , we must apply (18) sev-
eral times, in the same way as the algorithm described in
Section II-A. In the following, we show that the parameters in
(18), except for , can be estimated simultaneously.

A. Discrete Representation

In a discrete case, , and are column vectors of length ,
and is the matrix of the second difference. The optimization
problem is rewritten as

(19)

where is a diagonal matrix whose diagonal elements are
equal to . Let , , , and be the solution of the above
equation. Given , , and . Equation (19) becomes

(20)

Then, we have

(21)

where is a diagonal matrix whose diagonal elements are equal
to . Let . To estimate , we use the equation

and obtain

(22)

Similarly, to estimate , we use the equation
and obtain

(23)

where and .

The optimal value of depends on the parameter . Our
numerical experiments show that is insensitive to the optimal
solution; thus, we assign it a fixed value. The optimal residual

is dependent on the parameters and , and the value of
is sensitive to the solution. Next, we propose a signal model and
use it to estimate the parameters and .

B. Signal Model

We assume that a signal can be decomposed into two com-
ponents and that are orthogonal to each other, and let
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be in the null space of the operator . The signal model
assumes that

(24)

where and . It also assumes that the
optimal residual signal is a linear mixture of and :

(25)

where and are coefficients. Substituting (24) and (25) into
(20) and using and , we have (26)

(26)

The above equation shows that the terms related to and
can be separated, so the optimization of can
be divided into two components as follows:

(27)

and . By taking the partial derivative of with respect
to and setting the result to zero, we obtain

(28)

Similarly, by taking the partial derivative of with respect
to and setting the result to zero, we obtain

(29)

If we assume that has a very small value, then we have
because . Substituting the above results for

and into (25), we obtain

(30)

By (24) and (30), we have

(31)

The component removed from by solving (19) with the oper-
ator is , which is a fraction of .

Based on the assumptions that and ,
as well as the result of (31), we can derive the optimal value of
the parameter by

(32)

On the other hand, from (23), we have

(33)

where . By (33), we
have

(34)

From (32) and (34), the optimal parameters and are related
by

(35)

The optimal value of can be estimated by solving the fixed
point of the equation

(36)

From above derivation, we note that, given the value of ,
the optimal values of the parameters , , , and in (19)
can be estimated. However, the optimal value of , which reg-
ularizes the parameters of the operator [see (17)], cannot be es-
timated by the proposed procedure. Instead, one can try several
values for and choose the one that gives the best estimation
of the other parameters. However, in practice, we have found
that the solution of (19) is insensitive to the value of (see
Section IV). Thus, its value can be fixed.

C. Null Space Pursuit Algorithm

We summarize the derivations in Sections III-A and B to solve
the optimization of (19) in the following algorithm.

Step 1) Input: the signal , the parameter , the stopping
threshold , and the initial values of and .

Step 2) Let , , , and .
Step 3) Compute according to (22) as follows:

(37)

where is a diagonal matrix whose diagonal
elements are equal to .

Step 4) Compute according to (36) as follows:

(38)

where
and , is a diagonal matrix whose
diagonal elements are equal to .
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Step 5) Compute according to (23) as follows:

(39)

Step 6) Compute according to (32) as follows:

(40)

Step 7) If , then set and go
to Step 3.

Step 8) Output: the optimal residual signal , the
parameter , the leakage parameter

, and the operator parameter .

When the algorithm terminates, the component that is re-
moved by the process is (see (31)). Ac-
cording to our signal model (see (24)), the component of
is in the null space of the optimal operator . Hence, our
algorithm keeps a

(41)

portion of in the residual signal . In fact, the leakage pa-
rameter controls the greediness when a component is removed
from the null space of the operator in a signal. In [14], the value

corresponds to an extremely greedy case because the op-
erator removes the signal completely. On the other
hand, if , then all of is retained in the residual signal.
This corresponds to an extremely lazy case because the operator

does not remove any information. Thus, we enforce
the value in the segment between 0 and 1, which corresponds
to the operator removing at least 1/2 of . This constraint can
be implemented in Step 6 of the algorithm by setting any
value outside the segment to be the same as the value at the
closest end point of the segment.

IV. IMPLEMENTATION AND EXPERIMENT RESULTS

In this section, we consider some implementation issues of
the proposed algorithm and present the results of experiments
on various signals.

Every point in a signal has an value. The optimal value of
parameter is estimated in Step 3 of the proposed algorithm.
The step uses (37) to estimate all the values of the signal si-
multaneously in each iteration. However, we found that the es-
timation is unstable at points where is very small [15].
Thus, in our implementation, we use the following method to es-
timate the values. At each point , we select a neighborhood

of the point and calculate

(42)

where is the restriction of on the interval ; is
the second difference of on ; and the parameter
ensures that the denominator is not zero. In all the experiments,
the neighborhood is 31 points for any . We also impose a

Fig. 2. Using the NSP algorithm to decompose �������� ����� ����	��. Top
left: The input signal. Top right: the residual signal after the first and second sub-
components are extracted from the input signal. Middle left: the first extracted
component. Middle right: the error signal obtained by subtracting the first ex-
tracted component from �������. Bottom left: the second extracted component.
Bottom right: the error signal obtained by subtracting the second extracted com-
ponent from ����������	��. We use � 
 �� � � as the initial value to ex-
tract both subcomponents. (a) Original signal. (b) The residual. (c) Extracted
first component. (d) Difference with real component. (e) Extracted second com-
ponent. (f) Difference with real component.

constraint to resolve the difficulty that arises due to the unstable
estimation of in some signals. Specifically, we constrain the
support of the spectrum of the extracted component to be in
a subset of the spectrum of the signal . This constraint corre-
sponds to the projection of the spectrum of into the support of
the spectrum of . It is straightforward to incorporate the con-
straint into our algorithm. After Step 5, we compute the spec-
trum of , and remove the part that does not appear in the
support of the spectrum of to obtain the modified spectrum of

. The residual signal is obtained by applying the inverse
FFT on the modified spectrum of . Our experiments show
that incorporating the constraint in the implementation makes
very little difference to the signal separation results. However,
incorporating it can reduce the variation of the estimated instan-
taneous frequency when a signal’s SNR is low.

The threshold can be set as low as for most signals, but
the algorithm cannot be stopped if the noise is high. Thus, for a
noisy signal, we set the threshold value at . Although the
Lagrangian multiplier can be estimated adaptively, the initial
value of may affect the results. Our experiment results show
that, for a broad range of initial values (from 0.01 down to
0.0000001), the algorithm decomposes a signal well. Different
initial values in the range affect the convergence rate of the de-
composition. The parameter is insensitive to various signals,
so its value is fixed. In all our experiments, is set at 0.0001
and the initial value of is set at 1.

In the following, we provide some examples to demonstrate
the results achieved by our algorithm when decomposing
various signals. The first example shows that the algo-
rithm can separate harmonic signals. We separate the signal

into two subcomponents,
and . The extracted subcomponents and

the residual signals are shown in Fig. 2. It is interesting to note
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Fig. 3. Removing the noise from a noisy chirp signal. Top left: the noisy chirp
signal, which has an SNR of�0.12 dB. Top right: the clean chirp signal. Middle
left: the extracted subcomponent, which has an SNR of 9 dB. Middle right: the
error signal obtained by subtracting the extracted component from the clean
signal. Bottom left: the instantaneous frequency of the extracted component
(extracted IF) and that of the clean chirp signal (ground truth IF) are super-
imposed. The initial value of � is set at 0.00005. Note that, in this case, the
noise level is so high that the instantaneous frequency of the chirp signal cannot
be estimated accurately from the extrema of the noisy signal. (a) Noisy signal.
(b) Clean signal. (c) Extracted first component. (d) Difference with real compo-
nent. (e) Extracted instantaneous frequency.

that the first extracted component is the low frequency sub-
component of . By contrast, in the approach in [14], which
uses the extrema to estimate the instantaneous frequency, the
first extracted component is the high frequency subcomponent
of .

In the second example, we show that the proposed Null Space
Pursuit (NSP) algorithm can remove the noise from a noisy chirp
signal. We experimented by embedding the chirp signal

in additive Gaussian random noise
so that the noisy chirp signal’s SNR was 0.12 dB, as shown in
Fig. 3. The decomposition results derived by the NSP algorithm
are also shown in the figure. The SNR of the extracted subcom-
ponent is 9 dB, which means there is a 9 dB gain in the noise
reduction of this signal. The estimated instantaneous frequency
and the correct instantaneous frequency are superimposed in the
bottom left subfigure of Fig. 3. The error is relatively large at the
beginning and end of the signal because of the boundary effect
in our process.

The method in [14] can only be used to estimate the instan-
taneous frequency of an oscillatory signal. For a non-oscilla-
tory signal, the parameters of the proposed operator cannot be
derived from the extrema of the signal. In contrast, our algo-
rithm can estimate the parameters of the proposed operators,
even when the signal is not oscillatory. This is because we use a
variational approach to estimate the parameters [see (22)]. Fig. 4
shows that our algorithm can remove the noise from a piecewise
smooth signal. Because of the regularization of our approach,
the extracted component is a smooth function. When compared
to the original signal, the maximal error appears as a singularity,
as shown in the bottom-right subfigure of Fig. 4.

Fig. 4. Extracting the piecewise smooth component from a noisy signal. Top
left: the noisy signal. Top right: The clean piecewise smooth signal. Bottom left:
The extracted component. The singularities are oversmoothed by our approach.
Bottom right: the error signal obtained by subtracting the extracted component
from the clean signal. The maximal errors occur at the singularities. The initial
value of � is 0.00001.

Fig. 5. The decomposition of Poland’s electricity consumption signal. Top left:
The signal. Top right: The trend of the signal (the first extracted subcompo-
nent). Left-hand rows 2, 3, and 4: the second, third, and residual subcompo-
nents respectively. The spectrum of each extracted component is shown in the
right-hand subfigure of the corresponding row. The unit of the horizontal axes
in the right-hand subfigures is ������ and the initial values of � for the ex-
traction of the first, second, and third subcomponents are set at 0.001, 0.01,
and 0.1 respectively. The second and third extracted subcomponets relate, re-
spectively, to a one-week cycle and a half-week cycle, which might correlate
with people’s working patterns over a week. (a) Original signal. (b) First com-
ponent. (c) Second component. (d) Spectrum of second component. (e) Third
component. (f) Spectrum of third component. (g) Residual signal. (h) Spectrum
of residual.

We also study two real-life signals. The first is Poland’s daily
electricity consumption in 1990 [10]. Fig. 5 shows the decom-
position results derived by our algorithm. A similar decompo-
sition of oscillatory components is reported in [14], and the
trend component is estimated by calculating the local mean of
the signal [16]. The optimal value of the Lagrangian parameter
in [14] is selected manually by trial and error. In contrast, all
the parameters of our decomposition (except ) are estimated
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Fig. 6. Top left: The signal of the anomaly in the annual mean global surface
temperature. The first five components and the residual signal are shown in sub-
figures (b) to (g), respectively. The third component, plotted in subfigure (d), is
a chirp signal with a higher variation than the others. Note that the chirp signal
decreases and then increases as the year progresses. The initial values of � for
the extraction of the first, second, third, fourth, and fifth subcomponents are set
at 0.001, 0.001, 0.01, 0.01, and 0.1, respectively. When the NSP algorithm stops,
these values are 0.0018, 0.0023, 0.0081, 0.0030, and 0.0059, respectively. Note
that the first extracted component of the NSP algorithm is the local mean of the
input signal. (a) The input signal. (b) Extracted first component. (c) Extracted
second component. (d) Extracted third component. (e) Extracted fourth compo-
nent. (f) Extracted fifth component. (g) The residual signal.

adaptively from the signal and the residual signals of the decom-
position.

The last example is the anomaly in the annual mean global
surface temperature reported in [21]. The purpose of processing
the signal is to decompose it into additive subcomponents and
then observe the anomaly of variations in the global tempera-
ture from the subcomponents. Fig. 6 shows the decomposition
results derived by the NSP algorithm. The first subcomponent
extracted by the algorithm is the trend. The energy of the sub-
components extracted after the fifth subcomponent is extremely
small; therefore, we do not show them. The third subcomponent
is of the most interest because the variation in the temperature
is relatively high compared to that in the other subcomponents.
In addition, the frequency of the third subcomponent decreases
and then increases as the year progresses. The fifth subcompo-
nent is almost a periodic signal over a period of ten years. It
might be correlated with the periodic fluctuations in the length
of a day (LOD) over a decade period in [23] and [24]. The results
obtained by the EMD decomposition approach are reported in
[21] and [22]. To compare them with the results of the NSP al-
gorithm, we show the first five subcomponents of the Ensemble
Empirical Mode Decomposition (EEMD) algorithm in Fig. 7.
Clearly, decomposition results derived by the NSP and EMD
algorithms are different. It would therefore be very interesting
to investigate the correlation between the decomposed data de-
rived by the two methods.

Fig. 7. Separation results of the global surface temperature data [see subfigure
(a) of Fig. 6] derived by the EEMD algorithm. The codes of the algorithm can
be found in [21]. Subfigures (a), (b), (c), (d), (e), and (f) are the extracted first,
second, third, fourth and fifth components and the residual signal respectively.
(a) Extracted first component. (b) Extracted second component. (c) Extracted
third component. (d) Extracted fourth component. (e) Extracted fifth compo-
nent. (f) The residual signal.

Fig. 8. Separation results of the global surface temperature data (see subfigure
(a) of Fig. 6) derived by using the separation algorithm in [14]. Subfigures (a),
(b), (c), (d), and (e) are the extracted first, second, third, fourth, and fifth com-
ponents respectively. The � values used by Algorithm08 to extract the first,
second, third, fourth, and fifth components are taken from the final � values
of the second, third, fourth, fifth, and sixth components derived by the NSP al-
gorithm. The � values of Algorithm08 are 0.0023, 0.0081, 0.0030, 0.0059 and
0.0093 for the extraction of the first, second, third, fourth, and fifth components,
respectively (see the caption of Fig. 6). (a) Extracted first component. (b) Ex-
tracted second component. (c) Extracted third component. (d) Extracted fourth
component. (e) Extracted fifth component.

Finally, we compare the results of the NSP algorithm with
those of the algorithm in [14]. Since the parameters of the latter
algorithm (called Algorithm08 for convenience) must be deter-
mined manually, we use the optimal values of obtained by the
NSP algorithm as the corresponding values of Algorithm08.
First, to obtain the detrend signal, we remove the trend of the
global surface temperature signal by subtracting the local mean
subcomponent obtained by the NSP algorithm from the signal.
Fig. 8 shows the results of applying Algorithm08 to extract the
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first five subcomponents of the detrend signal. Since the corre-
sponding and values of Algorithm08 and the NSP algo-
rithm are the same, the differences in the separation results are
mainly due to the parameter in the third term of (6), which
determines the amount of to be retained in the null space
of the operator , and the estimated parameters of . Algo-
rithm08 solves the optimization problem in (3), which does not
have the parameter, by estimating the operator from the ex-
trema of a signal. The separation results of the NSP algorithm
and Algorithm08 are also different.

V. CONCLUSION

We have proposed an approach that uses an adaptive operator
to separate a signal into additive subcomponents. Basically, we
generalize the original operator-based approach by achieving
better control of the amount of information to be removed from
the null space of the optimal operator in the signal. We show
that, under our approach, the operators’ parameters as well as
the Lagrangian multipliers can be estimated adaptively. This
overcomes the difficulties encountered when implementing the
original approach on real-life signals. We compare the proposed
NSP approach to the MP approach and show that it is a gener-
alization of the MP approach. In addition, we provide several
examples, including real-life signals, to demonstrate the sepa-
ration results derived by our algorithm. In our future work, we
will investigate various issues, such as developing operators to
preserve singularities and extending the method to images.
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