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ABSTRACT

In this paper a signal denoising scheme based a multires-
olution approach referred to as Empirical mode decompo-
sition (EMD) [1] is presented. The denoising method is a
fully data driven approach. Noisy signal is decomposed adap-
tively into intrinsic oscillatory components called Intrinsic
mode functions (IMFs) using a decomposition algorithm al-
gorithm called sifting process. The basic principle of the
method is to reconstruct the signal with IMFs previously fil-
tered or thresholded. The denoising method is applied to one
real signal et to four simulated signals with different noise
levels and the results compared to Wavelets, Averaging and
Median methods. The effect of level noise value on the per-
formances of the proposed denoising is analyzed. The study
is limited to signals corrupted by additive white Gaussian ran-
dom noise.

1. INTRODUCTION

The recovery of a signal from observed noisy data is a clas-
sical problem in signal processing. Especially for the case
of additive white Gaussian noise a number of filtering meth-
ods have been proposed [2]-[4]. Linear methods such as the
Wiener filtering [2] are largely used because linear filters are
easy to implement and design. However, these methods are
not so effective when signals contain sharp edges and im-
pulses of short duration. Furthermore, real signals are of-
ten nonstationary. To overcome these difficulties nonlinear
methods have been proposed and especially those based on
Wavelets thresholding [3]-[4]. The idea of thresholding re-
lies on the assumption that signal magnitudes dominate the
magnitudes of the noise in a Wavelets representation, so that
Wavelets coefficients can be set to zero if their magnitudes
are less than a pre-determined threshold [4]. A limit of the
Wavelets approach is that the basis functions are fixed, and
thus do not necessarily match all real signals. To avoid this
problem time-frequency atomic signal decomposition can be
used [5]-[6]. As for Wavelets packets, if the dictionary is very
large and rich with a collection of atomic waveforms which
are located on a much finer grid in time-frequency space than
Wavelets and cosine packet tables, then it should be possible
to represent a large class of real signals (for denoising, com-

pression,...). But, in spite of this, the basis functions must be
specified (Gabor functions,. . .).
Recently, a new signal decomposition method called Empiri-
cal mode decomposition (EMD) has been introduced by Huang
et al. [1] for analyzing data from nonstationary and non-
linear processes. The major advantage of the EMD is that
the basis functions are derived from the signal itself. Hence,
the analysis is adaptive in contrast to the traditional methods
where the basis functions are fixed. In this paper, a denois-
ing scheme using EMD is proposed. The EMD is based on
the sequential extraction of energy associated with various
intrinsic time scales of the signal starting from finer tempo-
ral scales (high frequency modes) to coarser ones (low fre-
quency modes). The total sum of the IMFs matches the signal
very well and therefore ensures completeness. The the basic
idea of the proposed scheme is to preprocessed each IMF us-
ing thresholding, as in Wavelets analysis, of filtering before
complete signal reconstruction.

2. EMD ALGORITHM

The EMD involves the adaptive decomposition of given sig-
nal, x(t), into a series of oscillating components, IMFs, by
means of a decomposition process called sifting algorithm.
The name IMF is adapted because it represents the oscilla-
tion mode embedded in the data. With this definition, the
IMF in each cycle, defined by the zero crossings of, involves
only one mode of oscillation, no complex riding waves are
allowed. The essence of the EMD is to identify the IMF by
characteristic time scales, which can be defined locally by the
time lapse between two extrema of an oscillatory mode or
by the time lapse between two zero crossings of such mode.
The EMD picks out the highest frequency oscillation that re-
mains in the signal. Thus, locally, each IMF contains lower
frequency oscillations than the one extracted just before. Fur-
thermore, the EMD does not use any pre-determined filter or
Wavelet function. It is fully data driven method. Since the
decomposition of the EMD is based on the local character-
istics time scale of the data, it is applicable to nonlinear and
non-stationary processes. The EMD decomposes into a sum
of IMFs that: (1) have the same numbers of zero crossings
and extrema; and (2) are symmetric with respect to the lo-
cal mean. The first condition is similar to the narrow-band



requirement for a stationary Gaussian process. The second
condition modifies a global requirement to a local one, and is
necessary to ensure that the IF will not have unwanted fluc-
tuations as induced by a symmetric waveforms. The sifting
process is defined by the following steps:

Step 1) Fix ǫ, j ← 1 (jth IMF)
Step 2) rj−1(t)← x(t) (residual)
Step 3) Extract the j − th IMF:
(a) hj,i−1(t)← rj−1(t), i← 1 (i number of sifts)
(b) Extract local maxima/minima of hj,i−1(t)
(c) Compute upper envelope and lower envelope

functions Uj,i−1(t) and Lj,i−1(t)
by interpolating respectively local
maxima and minima of hj,i−1(t)

(d) Compute the envelopes mean:
µj,i−1(t)← (Uj,i−1(t) + Lj,i−1(t))/2

(e) Update: hj,i(t)← hj,i−1(t)− µj,i−1(t), i← i + 1
(f) Calculate stopping criterion:

SD(i) =

T
∑

t=0

| hj,i−1(t)− hj,i(t) |
2

(hj,i−1(t))2

(g) Decision: Repeat Step (b)-(f) until SD(i) < ǫ
and then put IMFj(t)← hj,i(t) (jth IMF)

Step 4) Update residual: rj(t)← rj−1(t)− IMFj(t)
Step 5) Repeat Step 3 with j ← j + 1

until the number of extrema in rj(t) ≤ 2
where T is the time duration. The sifting is repeated several
times (i) in order to get h to be a true IMF that fulfills the
requirements R1 and R2. The result of the sifting procedure
is that x(t) will be decomposed into IMFj(t), j = 1, . . . N
and residual rN (t) :

x(t) =

N
∑

j=1

IMFj(t) + rN (t). (1)

To guarantee that the IMF components retain enough physical
sens of both amplitude and frequency modulations, we have
to determine a criterion for the sifting process to stop. This
is accomplished by limiting the size of the standard deviation
SD computed from the two consecutive sifting results. Usu-
ally, SD is set between 0.2 to 0.3. Note that the EMD does
not use any pre-determined filter or Wavelet function. It is a
fully data driven method.

3. DENOISING PRINCIPLE

Let fj(t) be a noiseless IMF and IMFj its noisy version.
Consider a deterministic signal y(t) corrupted by an additive
Gaussian white random noise, bj(t), with a noise level σj(t)
as follows :

IMFj(t) = fj(t) + bj(t) (2)

where j = {1, . . . , N}. An estimation f̃j(t) of fj(t) based
on the noisy observation IMFj(t) is given by

f̃j(t) = Γ[IMFj(t), τj ] (3)

where Γ[hj , τj ] is a preprocessing function, defined by a set
of parameters τj , applied to signal hj . The denoising signal
x̃(t) is given by:

x̃(t) =
N

∑

j=1

f̃j(t) + rN (t) (4)

In this work different kinds of preprocessing are used: tem-
poral filtering using Savitzky-Golay1 [7], Averaging, Median,
and nonlinear transformation (hard and soft thresholding) [4].

3.1. EMD-Thresholding

A smooth version of the input signal can be obtained by thresh-
olding the IMFs before signal reconstruction. If Γ[., τj ] is a
thresholding function, then τj is the threshold parameter. This
threshold can be determined in different ways. Donoho and
Johnstone [3] proposed an universal threshold for removing
added Gaussian noise τj given by

τj = σ̃j

√

2. loge(T ) (5)

σ̃j = MADj/0.6745 (6)

MADj = Median {|IMFj(t)−Median {IMFj(t
′)}|} (7)

where σ̃j is the estimation of the noise level of the jth IMF
(scale level) and MADj represents the absolute median de-
viation of the jth IMF. The soft thresholding shrinks the IMF
samples by τj towards zero as follows [4]:

f̂j(t) =







IMFj(t)− τj

0
IMFj(t) + τj

If IMFj(t) ≥ τj

If |IMFj(t)| < τj

If IMFj(t) ≤ −τj

(8)

Hard thresholding is defined as follows [4]:

f̂j(t) =

{

IMFj(t)
0

If |IMFj(t)| > τj

If |IMFj(t)| ≤ τj
(9)

3.2. EMD-SG

Rather than having its properties defined in the Fourier do-
main, and then translated to the time domain, Savitzky-Golay
(SG) filter derives directly from a particular formulation of
the data smoothing problem in the time domain [7]. Here ML

is the number of points used to the left of a data point i, i.e.,
earlier than it, while MR is the number used to the right, i.e.,
later. A so-called causal filter would have MR = 0.

f̃j(i) =

m=MR
∑

m=−ML

αm.IMFj(i + m) (10)

The idea of the filtering is to find filter coefficients αm that
preserve higher moments. Equivalently, the idea is to approx-
imate the underlying function with the moving window by

1Also called DISPO filter (Digital Smoothing Polynomial).



a polynomial of higher order. For each point IMFj(i), we
least-squares fit to a polynomial to all (ML + ML + 1) points
in the moving window, and then set IMFj(i) to be the value
of that polynomial of that polynomial at position i. We move
on the next sample IMFj(i + 1), to do a whole new least-
squares fit using a shifted window. There are particular sets of
coefficients αm for which equation (10) automatically accom-
plishes the process of polynomial least-squares fitting inside
a moving window [8]. To derive such coefficients, consider
how IMFj(0), for example, might be obtained. We fit a poly-
nomial of degree K in i, namely α0+α1i

1+α1i
2+. . .+αKiL

to the values IMFj(ML), . . . IMFj(MR). Then IMFj(0)
will be the value of that polynomial at i = 0, namely α0.

4. RESULTS

To test the denoising scheme, we have performed numeri-
cal simulations for four test signals: ”Doppler”, ”Blocks”,
”Bumps” and ”Heavysine” obtained using WAVELAB Soft-
ware2. The method is also tested on one real signal: ”ECG”.
The signals size is T = 2048. For synthesized signals the
variance of the white Gaussian noise is set so that the orig-
inal SNR (before denoising) is maintained at constant value
(2 dB). The SNR of the ”ECG” is -9 dB. The original signals
and their noisy versions are shown in figures 1 and 2, respec-
tively. Table I shows comparisons of SNR values for Aver-
aging, Median, Wavelets, EMD-Soft and EMD-SG methods.
Each noisy signal is decomposed using the EMD and the de-
rived IMFs are filtered (thresholded) using preprocessing a P
(SG, Median, Average,...) method. Hence the correspond-
ing denoising scheme is termed ”EMD-P” method. For SG
filter the order L is set to 3. Each reconstructed signal plot
(black line) is superposed on the corresponding free noise sig-
nal (cyan line). Globally, the results are qualitatively appeal-
ing; the reconstructions jump where the signal jumps and are
smooth where the true signal is smooth. The significant re-
sults are obtained for Blocks, Heavysine, Bumps and ECG
(Figs. 3(b)-(e)) which are very close to their corresponding
original signals. These findings are confirmed by the SNRs
values listed in Table I where significant improvements in
SNR range from 10 dB to 28 dB. As indicated in Table I,
both the EMD-SG and the EMD-Soft outperform the Aver-
aging and the Median methods. For Bumps and ECG sig-
nals both the EMD-SG and the EMD-Soft perform better than
the Wavelets method. However, the Wavelets method (14.97
dB) performs better than the EMD-SG (13.57 dB) for Doppler
signal. The efficiency of the compared methods depends on
the signal behaviour but globally the EMD-SG performs bet-
ter than Wavelets, EMD-Soft, Median and Averaging meth-
ods. For the ECG signal the Averaging method achieves bet-
ter SNR than the Wavelets method. The oscillations seen in
flat regions (Figs. 3(b)-(c)) may be due to the interpolation

2Available from Stanford Statistics Department, courtesy of D.L. Donoho
and I.M. Johnstone.

scheme used in the sifting process and thus it would be in-
teresting to search for other interpolation methods other than
cubic splines. A careful examination of the Doppler signal
(Fig. 3(a)) shows that the beginning of this signal, (oscilla-
tions of rapid change), is not well reconstructed. This may be
due to the rate sampling used. The same problem is seen in
the Wavelets reconstruction.
We have investigated the effect of noise level value on the
EMD denoising performances using ”Bumps” signal:

Signals
Doppler Blocks Heavysine Bumps ECG

SNR SNR SNR SNR SNR

Noise 2, 03 2, 03 2, 03 2, 03 −9, 02
Averaging 9, 86 9, 06 9, 46 12, 66 7, 23
Median 10, 57 10, 17 10, 55 10, 67 4, 62
Wavelets 14,97 11,94 14,47 18, 76 5, 82
EMD-Soft 11, 13 11, 98 11, 18 19, 86 14, 39
EMD-SG 13, 57 12,00 14,50 20,60 17,77

Table 1. Denoising results in SNR for test and ECG signals
corrupted by Gaussian noise.

4.1. Noise effect

Figure (4) summarizes the noise effect analysis of Bumps
signal with different values of square root of SNR (before
denoising) ranging from 0.2 to 5 (step=0.2). Six methods
(EMD-SG, EMD-Soft, EMD-Hard, EMD-Median, EMD-Average,
Wavelets) have been compared. For Wavelets method the
soft thresholding is used. For EMD-SG, EMD-Median and
EMD-Average the window size w is set to 7. Figure (4)
shows that as the square root of SNR increases (noise level
decreases) the Wavelets and EMD-SG give the same results.
At the same time EMD-Soft, EMD-Median, EMD-Average
and EMD-Hard are equivalents but performs less better than
EMD-SG and Wavelets. For very high noise levels EMD-Soft
and EMD-Hard are equivalents to Wavelets.

5. CONCLUSION

This paper presents a signals denoising scheme. This ap-
proach, based on EMD method, is simple and fully data-driven.
Results obtained for synthetic signals and for one real signal
show that our method is effective for noise removal. To run
the EMD with SG filter the window size is required. For better
signal reconstruction we plan to study the effect of sampling
frequency on interpolation to compute the upper and lower
envelopes. We also plan how to adapt the SG filter order (L)
to each IMF and how to find optimal size, w, window. To con-
firm the effectiveness of the EMD scheme, the method must
be evaluated with a large class of real signals and in different
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Fig. 1. Synthetic and real signals with T=2048.
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Fig. 2. Noisy signals (SNR=2dB; SNR=-9dB for ”ECG”).
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Fig. 3. Denoising results in SNR (dB) of test signals cor-
rupted by Gaussian noise.
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experimental. The presented noise effect analysis of ”Bumps”
signals must be extended to other signals to confirm the ob-
tained results.
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