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A new Ensemble Empirical Mode Decomposition (EEMD) is presented. This new
approach consists of sifting an ensemble of white noise-added signal (data) and treats
the mean as the final true result. Finite, not infinitesimal, amplitude white noise is
necessary to force the ensemble to exhaust all possible solutions in the sifting process,
thus making the different scale signals to collate in the proper intrinsic mode functions
(IMF) dictated by the dyadic filter banks. As EEMD is a time–space analysis method,

the added white noise is averaged out with sufficient number of trials; the only persistent
part that survives the averaging process is the component of the signal (original data),
which is then treated as the true and more physical meaningful answer. The effect of
the added white noise is to provide a uniform reference frame in the time–frequency
space; therefore, the added noise collates the portion of the signal of comparable scale
in one IMF. With this ensemble mean, one can separate scales naturally without any
a priori subjective criterion selection as in the intermittence test for the original EMD
algorithm. This new approach utilizes the full advantage of the statistical characteristics
of white noise to perturb the signal in its true solution neighborhood, and to cancel itself
out after serving its purpose; therefore, it represents a substantial improvement over the
original EMD and is a truly noise-assisted data analysis (NADA) method.

Keywords: Empirical Mode Decomposition (EMD); ensemble empirical mode decompo-
sitions; noise-assisted data analysis (NADA); Intrinsic Mode Function (IMF); shifting
stoppage criteria; end effect reduction.

1. Introduction

The Empirical Mode Decomposition (EMD) has been proposed recently1,2 as an
adaptive time–frequency data analysis method. It has been proved quite versatile
in a broad range of applications for extracting signals from data generated in noisy
nonlinear and nonstationary processes (see, e.g., Refs. 3 and 4). As useful as EMD
proved to be, it still leaves some annoying difficulties unresolved.

One of the major drawbacks of the original EMD is the frequent appearance
of mode mixing, which is defined as a single Intrinsic Mode Function (IMF) either
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consisting of signals of widely disparate scales, or a signal of a similar scale resid-
ing in different IMF components. Mode mixing is often a consequence of signal
intermittency. As discussed by Huang et al.,1,2 the intermittence could not only
cause serious aliasing in the time–frequency distribution, but also make the phys-
ical meaning of individual IMF unclear. To alleviate this drawback, Huang et al.2

proposed the intermittence test, which can indeed ameliorate some of the difficul-
ties. However, the approach has its own problems: first, the intermittence test is
based on a subjectively selected scale. With this subjective intervention, the EMD
ceases to be totally adaptive. Second, the subjective selection of scales works if
there are clearly separable and definable timescales in the data. In case the scales
are not clearly separable but mixed over a range continuously, as in the case of
the majority of natural or man-made signals, the intermittence test algorithm with
subjectively defined timescales often does not work very well.

To overcome the scale separation problem without introducing a subjective
intermittence test, a new noise-assisted data analysis (NADA) method is proposed,
the Ensemble EMD (EEMD), which defines the true IMF components as the mean
of an ensemble of trials, each consisting of the signal plus a white noise of finite
amplitude. It should be noted here that we use word ‘single’ instead of word ‘data’
in this paper (except in some part of Sec. 2) because the purpose of this paper is to
decompose the whole targeted data but not to identify the particular part that is
known a priori as containing interesting information. Since there is added noise in
the decomposition method, we refer the original data as ‘signal’ in most occasions.
With this ensemble approach, we can clearly separate the scale naturally without
any a priori subjective criterion selection. This new approach is based on the insight
gleaned from recent studies of the statistical properties of white noise,5,6 which
showed that the EMD is effectively an adaptive dyadic filter banka when applied to
white noise. More critically, the new approach is inspired by the noise-added anal-
yses initiated by Flandrin et al.7 and Gledhill.8 Their results demonstrated that
noise could help data analysis in the EMD.

The principle of the EEMD is simple: the added white noise would populate
the whole time–frequency space uniformly with the constituting components of
different scales. When signal is added to this uniformly distributed white back-
ground, the bits of signal of different scales are automatically projected onto proper
scales of reference established by the white noise in the background. Of course,
each individual trial may produce very noisy results, for each of the noise-added
decompositions consists of the signal and the added white noise. Since the noise in
each trial is different in separate trials, it is canceled out in the ensemble mean of

aA dyadic filter bank is a collection of band-pass filters that have a constant band-pass shape (e.g.,
a Gaussian distribution) but with neighboring filters covering half or double of the frequency range
of any single filter in the bank. The frequency ranges of the filters can be overlapped. For example,
a simple dyadic filter bank can include filters covering frequency windows such as 50 to 120Hz,
100 to 240 Hz, 200 to 480Hz, etc.
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enough trials. The ensemble mean is treated as the true answer, for, in the end,
the only persistent part is the signal as more and more trials are added in the
ensemble.

The critical concept advanced here is based on the following observations:

1. A collection of white noise cancels each other out in a time–space ensemble mean;
therefore, only the signal can survive and persist in the final noise-added signal
ensemble mean.

2. Finite, not infinitesimal, amplitude white noise is necessary to force the ensemble
to exhaust all possible solutions; the finite magnitude noise makes the different
scale signals reside in the corresponding IMF, dictated by the dyadic filter banks,
and render the resulting ensemble mean more meaningful.

3. The true and physically meaningful answer to the EMD is not the one without
noise; it is designated to be the ensemble mean of a large number of trials
consisting of the noise-added signal.

This EEMD proposed here has utilized many important statistical characteris-
tics of noise. We will show that the EEMD utilizes the scale separation capability of
the EMD, and enables the EMD method to be a truly dyadic filter bank for any data.
By adding finite noise, the EEMD eliminated largely the mode mixing problem and
preserve physical uniqueness of decomposition. Therefore, the EEMD represents a
major improvement of the EMD method.

In the following sections, a systematic exploration of the relation between noise
and signal in data will be presented. Studies of Flandrin et al.5 and Wu and Huang6

have revealed that the EMD serves as a dyadic filter for various types of noise. This
implies that a signal of a similar scale in a noisy data set could possibly be contained
in one IMF component. It will be shown that adding noise with finite rather than
infinitesimal amplitude to data indeed creates such a noisy data set; therefore,
the added noise, having filled all the scale space uniformly, can help to eliminate
the annoying mode mixing problem first noticed by Huang et al.2 Based on these
results, we will propose formally the concepts of NADA and noise-assisted signal
extraction (NASE), and will develop a method called the EEMD, which is based
on the original EMD method, to make NADA and NASE possible.

The paper is arranged as follows. Section 2 will summarize previous attempts of
using noise as a tool in data analysis. Section 3 will introduce the EEMD method,
illustrate more details of the drawbacks associated with mode mixing, present
concepts of NADA and of NASE, and introduce the EEMD in detail. Section 4
will display the usefulness and capability of the EEMD through examples. Sec-
tion 5 will further discuss the related issues to the EEMD, its drawbacks, and
their corresponding solutions. A summary and discussion will be presented in the
final section of the main text. Two appendices will discuss some related issues
of EMD algorithm and a Matlab EMD/EEMD software for research community
to use.
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2. A Brief Survey of Noise-Assisted Data Analysis

The word “noise” can be traced etymologically back to its Latin root of “nausea,”
meaning “seasickness.” Only in Middle English and Old French does it start to gain
the meaning of “noisy strife and quarrel,” indicating something not at all desirable.
Today, the definition of noise varies in different circumstances. In science and engi-
neering, noise is defined as disturbance, especially a random and persistent kind
that obscures or reduces the clarity of a signal. In natural phenomena, noise could
be induced by the process itself, such as local and intermittent instabilities, irresolv-
able subgrid phenomena, or some concurrent processes in the environment in which
the investigations are conducted. It could also be generated by the sensors and
recording systems when observations are made. When efforts are made to under-
stand data, important differences must be considered between the clean signals that
are the direct results of the underlying fundamental physical processes of our inter-
est (“the truth”) and the noise induced by various other processes that somehow
must be removed. In general, all data are amalgamations of signal and noise, i.e.,

x(t) = s(t) + n(t), (1)

in which x(t) is the recorded data, and s(t) and n(t) are the true signal and
noise, respectively. Because noise is ubiquitous and represents a highly undesirable
and dreaded part of any data, many data analysis methods were designed specifi-
cally to remove the noise and extract the true signals in data, although often not
successful.

Since separating the signal and the noise in data is necessary, three important
issues should be addressed: (1) The dependence of the results on the analysis meth-
ods used and assumptions made on the data. (For example, a linear regression of
data implicitly assumes the underlying physics of the data to be linear, while a
spectrum analysis of data implies the process is stationary.) (2) The noise level to
be tolerated in the extracted “signals,” for no analysis method is perfect, and in
almost all cases the extracted “signals” still contain some noise. (3) The portion
of real signal obliterated or deformed through the analysis processing as part of
the noise. (For example, Fourier filtering can remove harmonics through low-pass
filtering and thus deform the waveform of the fundamentals.)

All these problems cause misinterpretation of data, and the latter two issues are
specifically related to the existence and removal of noise. As noise is ubiquitous,
steps must be taken to insure that any meaningful result from the analysis should
not be contaminated by noise. To avoid possible illusion, the null hypothesis test
against noise is often used with the known noise characteristics associated with the
analysis method.6,9,7 Although most data analysis techniques are designed specifi-
cally to remove noise, there are, however, cases when noise is added in order to help
data analysis, to assist the detection of weak signals, and to delineate the under-
lying processes. The intention here is to provide a brief survey of the beneficial
utilization of noise in data analysis.
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The earliest known utilization of noise in aiding data analysis was due to Press
and Tukey10 known as pre-whitening, where white noise was added to flatten the
narrow spectral peaks in order to get a better spectral estimation. Since then,
pre-whitening has become a very common technique in data analysis. For exam-
ple, Fuenzalida and Rosenbluth11 added noise to process climate data; Link and
Buckley,12 and Zala et al.13 used noise to improve acoustic signal; Strickland and
Il Hahn14 used wavelet and added noise to detect objects in general; and Trucco15

used noise to help design special filters for detecting embedded objects on the ocean
floor experimentally. Some general problems associated with this approach can be
found in the works by Priestley,16 Kao et al.,17 Politis,18 and Douglas et al.19

Another category of popular use of noise in data analysis is more related to the
analysis method than to help extracting the signal from the data. Adding noise
to data helps to understand the sensitivity of an analysis method to noise and
the robustness of the results obtained. This approach is used widely; for example,
Cichocki and Amari20 added noise to various data to test the robustness of the
independent component analysis (ICA) algorithm, and De Lathauwer et al.21 used
noise to identify error in ICA.

Adding noise to the input to specifically designed nonlinear detectors could also
be beneficial to detecting weak periodic or quasi-periodic signals based on a physical
process called stochastic resonance. The study of stochastic resonance was pioneered
by Benzi and his colleagues in the early 1980s. The details of the development of
the theory of stochastic resonance and its applications can be found in a lengthy
review paper by Gammaitoni et al.22 It should be noted here that most of the
past applications (including those mentioned earlier) have not used the cancellation
effects associated with an ensemble of noise-added cases to improve their results.

Specific to analysis using EMD, Huang et al.23 added infinitesimal magnitude
noise to earthquake data in an attempt to prevent the low frequency mode from
expanding into the quiescent region. But they failed to realize fully the implications
of the added noise in the EMD method. The true advances related to the EMD
method had to wait until the two pioneering works by Gledhill8 and Flandrin et al.7

Flandrin et al.7 used added noise to overcome one of the difficulties of the
original EMD method. As the EMD is solely based on the existence of extrema
(either in amplitude or in curvature), the method ceases to work if the data lacks
the necessary extrema. An extreme example is in the decomposition of a Dirac pulse
(delta function), where there is only one extrema in the whole data set. To overcome
the difficulty, Flandrin et al.7 suggested adding noise with infinitesimal amplitude to
the Dirac pulse so as to make the EMD algorithm operable. Since the decomposition
results are sensitive to the added noise, Flandrin et al.7 ran an ensemble of 5000
decompositions, with different realizations of noise, all of infinitesimal amplitude.
Though they used the mean as the final decomposition of the Dirac pulse, they
defined the true answer as

d[n] = lim
e→0+

E{d[n] + εrk[n]}, (2)
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in which, [n] represents nth data point, d[n] is the Dirac function, rk[n] is a random
number, ε is the infinitesimal parameter, and E{ } is the expected value. Flandrin’s
novel use of the added noise has made the EMD algorithm operable for a data set
that could not be previously analyzed.

Another novel use of noise in data analysis is by Gledhill,8 who used noise to
test the robustness of the EMD algorithm. Although an ensemble of noise was used,
he never used the cancellation principle to define the ensemble mean as the true
answer. Based on his discovery (that noise could cause the EMD to produce slightly
different outcomes), he assumed that the result from the clean data without noise
was the true answer and thus designated it as the reference. He then defined the
discrepancy, ∆, as

∆ =
m∑

j=1

( ∑
t

(crj(t) − cnj(t))2
)1/2

, (3)

where crj and cnj are the jth component of the IMF without and with noise added,
and m is the total number of IMFs generated from the data. In his extensive study
of the detailed distribution of the noise-caused “discrepancy,” he concluded that
the EMD algorithm is reasonably stable for small perturbations. This conclusion is
in slight conflict with his observations that the perturbed answer with infinitesimal
noise showed a bimodal distribution of the discrepancy.

Gledhill had also pushed the noise-added analysis in another direction: he had
proposed to use an ensemble mean of noise-added analysis to form a “Composite
Hilbert spectrum.” As the spectrum is non-negative, the added noise could not
cancel out. He then proposed to keep a noise-only spectrum and subtract it from
the full noise-added spectrum at the end. This non-cancellation of noise in the
spectrum, however, forced Gledhill8 to limit the noise used to be of small magnitude,
so that he could be sure that there would not be too much interaction between the
noise-added and the original clean signal, and that the contribution of the noise to
the final energy density in the spectrum would be negligible.

Although noise of infinitesimal amplitude used by Gledhill8 has improved the
confidence limit of the final spectrum, Gledhill explored neither fully the cancella-
tion property of the noise nor the power of finite perturbation to explore all possible
solutions. Furthermore, it is well known that whenever there is intermittence, the
signal without noise can produce IMFs with mode mixing. There is no justification
to assume that the result without added noise is the truth or the reference sig-
nal. These reservations notwithstanding, all these studies by Flandrin et al.7 and
Gledhill8 had still greatly advanced the understanding of the effects of noise in the
EMD method, though the crucial effects of noise had yet to be clearly articulated
and fully explored.

In the following, the new noise-added EMD approach will be explained, in which
the cancellation principle will be fully utilized, even with finite amplitude noise. Also
emphasized is the finding that the true solution of the EMD method should be the
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ensemble mean rather than the clean data. This full presentation of the new method
will be the subject of the next section.

3. Ensemble Empirical Mode Decomposition

3.1. The empirical mode decomposition

This section starts with a brief review of the original EMD method. The detailed
method can be found in the works of Huang et al.1 and Huang et al.2 Different to
almost all previous methods of data analysis, the EMD method is adaptive, with
the basis of the decomposition based on and derived from the data. In the EMD
approach, the data X(t) is decomposed in terms of IMFs, cj , i.e.,

x(t) =
n∑

j=1

cj + rn, (4)

where rn is the residue of data x(t), after n number of IMFs are extracted. IMFs
are simple oscillatory functions with varying amplitude and frequency, and hence
have the following properties:

1. Throughout the whole length of a single IMF, the number of extrema and the
number of zero-crossings must either be equal or differ at most by one (although
these numbers could differ significantly for the original data set).

2. At any data location, the mean value of the envelope defined by the local maxima
and the envelope defined by the local minima is zero.

In practice, the EMD is implemented through a sifting process that uses only
local extrema. From any data rj−1, say, the procedure is as follows: (1) identify all
the local extrema (the combination of both maxima and minima) and connect all
these local maxima (minima) with a cubic spline as the upper (lower) envelope;
(2) obtain the first component h by taking the difference between the data and the
local mean of the two envelopes; and (3) Treat h as the data and repeat steps 1 and
2 as many times as is required until the envelopes are symmetric with respect to
zero mean under certain criteria. The final h is designated as cj . A complete sifting
process stops when the residue, rn, becomes a monotonic function from which no
more IMFs can be extracted.

Based on this simple description of EMD, Flandrin et al.5 and Wu and Huang6

have shown that, if the data consisted of white noise which has scales populated
uniformly through the whole timescale or time–frequency space, the EMD behaves
as a dyadic filter bank: the Fourier spectra of various IMFs collapse to a single
shape along the axis of logarithm of period or frequency. Then the total number
of IMFs of a data set is close to log2 N with N the number of total data points.
When the data is not pure noise, some scales could be missing; therefore, the total
number of the IMFs might be fewer than log2 N . Additionally, the intermittency
of signals in certain scale would also cause mode mixing.
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3.2. Mode mixing problem

“Mode mixing” is defined as any IMF consisting of oscillations of dramatically
disparate scales, often caused by intermittency of the driving mechanisms. When
mode mixing occurs, an IMF can cease to have physical meaning by itself, suggest-
ing falsely that there may be different physical processes represented in a mode.
Even though the final time–frequency projection could rectify the mixed mode to
some degree, the alias at each transition from one scale to another would irrecov-
erably damage the clean separation of scales. Such a drawback was first illustrated
by Huang et al.2 in which the modeled data was a mixture of intermittent high-
frequency oscillations riding on a continuous low-frequency sinusoidal signal. An
almost identical example used by Huang et al.2 is presented here in detail as an
illustration.

The data and its sifting process are illustrated in Fig. 1. The data has its funda-
mental part as a low-frequency sinusoidal wave with unit amplitude. At the three

(a)

(b)

(c)

(d)

Fig. 1. The very first step of the sifting process. Panel (a) is the input; panel (b) identifies local
maxima (gray dots); panel (c) plots the upper envelope (upper gray dashed line) and low envelope

(lower gray dashed line) and their mean (bold gray line); and panel (d) is the difference between
the input and the mean of the envelopes.
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middle crests of the low-frequency wave, high-frequency intermittent oscillations
with an amplitude of 0.1 are riding on the fundamental, as panel (a) of Fig. 1
shows. The sifting process starts with identifying the maxima (minima) in the
data. In this case, 15 local maxima are identified, with the first and the last coming
from the fundamental, and the other 13 caused mainly by intermittent oscillations
(panel (b)). As a result, the upper envelope resembles neither the upper envelope of
the fundamental (which is a flat line at one) nor the upper one of the intermittent
oscillations (which is supposed to be the fundamental outside intermittent areas).
Rather, the envelope is a mixture of the envelopes of the fundamental and of the
intermittent signals that lead to a severely distorted envelope mean (the thick gray
line in panel (c)). Consequently, the initial guess of the first IMF (panel (d)) is the
mixture of both the low-frequency fundamental and the high-frequency intermittent
waves, as shown in Fig. 2.

An annoying implication of such scale mixing is related to unstableness and lack
of the uniqueness of decomposition using the EMD. With stoppage criterion given
and end-point approach prescribed in the EMD, the application of the EMD to
any real data results in a unique set of IMFs, just as when the data is processed
by other data decomposition methods. This uniqueness is here referred to as “the
mathematical uniqueness,” and satisfaction to the mathematical uniqueness is the
minimal requirement for any decomposition method. The issue that is emphasized

Fig. 2. The intrinsic mode functions of the input displayed in Fig. 1(a).
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here is what we refer to as “the physical uniqueness.” Since real data almost always
contains a certain amount of random noise or intermittences that are not known
to us, an important issue, therefore, is whether the decomposition is sensitive to
noise. If the decomposition is insensitive to added noise of small but finite ampli-
tude and bears little quantitative and no qualitative change, the decomposition is
generally considered stable and satisfies the physical uniqueness; and otherwise,
the decomposition is unstable and does not satisfy the physical uniqueness. The
result from decomposition that does not satisfy the physical uniqueness may not be
reliable and may not be suitable for physical interpretation. For many traditional
data decomposition methods with prescribed base functions, the uniqueness of the
second kind is automatically satisfied. Unfortunately, the EMD in general does not
satisfy this requirement due to the fact that decomposition is solely based on the
distribution of extrema.

To alleviate this drawback, Huang et al.2 proposed an intermittence test that
subjectively extracts the oscillations with periods significantly smaller than a pre-
selected value during the sifting process. The method works quite well for this
example. However, for complicated data with scales variable and continuously dis-
tributed, no single criterion of intermittence test can be selected. Furthermore, the
most troublesome aspect of this subjectively pre-selected criterion is that it lacks
physical justifications and renders the EMD nonadaptive. Additionally, mode mix-
ing is also the main reason that renders the EMD algorithm unstable: any small
perturbation may result in a new set of IMFs as reported by Gledhill.8 Obviously,
the intermittence prevents EMD from extracting any signal with similar scales.
To solve these problems, the EEMD is proposed, which will be described in the
following sections.

3.3. Ensemble empirical mode decomposition

As given in Eq. (1), all data are amalgamations of signal and noise. To improve the
accuracy of measurements, the ensemble mean is a powerful approach, where data
are collected by separate observations, each of which contains different noise. To
generalize this ensemble idea, noise is introduced to the single data set, x(t), as if
separate observations were indeed being made as an analog to a physical experiment
that could be repeated many times. The added white noise is treated as the possible
random noise that would be encountered in the measurement process. Under such
conditions, the ith “artificial” observation will be

xi(t) = x(t) + wi(t). (5)

In the case of only one observation, each multiple-observation ensembles is mim-
icked by adding not arbitrary but different realizations of white noise, wi(t), to that
single observation as given in Eq. (5). Although adding noise may result in smaller
signal-to-noise ratio, the added white noise will provide a relatively uniform ref-
erence scale distribution to facilitate EMD; therefore, the low signal–noise ratio
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does not affect the decomposition method but actually enhances it to avoid the
mode mixing. Based on this argument, an additional step is taken by arguing that
adding white noise may help to extract the true signals in the data, a method that
is termed EEMD, a truly NADA method.

Before looking at the details of the new EEMD, a review of a few properties of
the original EMD is presented:

1. the EMD is an adaptive data analysis method that is based on local characteris-
tics of the data, and hence, it catches nonlinear, nonstationary oscillations more
effectively;

2. the EMD is a dyadic filter bank for any white (or fractional Gaussian) noise-only
series;

3. when the data is intermittent, the dyadic property is often compromised in the
original EMD as the example in Fig. 2 shows;

4. adding noise to the data could provide a uniformly distributed reference scale,
which enables EMD to repair the compromised dyadic property; and

5. the corresponding IMFs of different series of noise have no correlation with each
other. Therefore, the means of the corresponding IMFs of different white noise
series are likely to cancel each other.

With these properties of the EMD in mind, the proposed EEMD is developed
as follows:

1. add a white noise series to the targeted data;
2. decompose the data with added white noise into IMFs;
3. repeat step 1 and step 2 again and again, but with different white noise series

each time; and
4. obtain the (ensemble) means of corresponding IMFs of the decompositions as

the final result.

The effects of the decomposition using the EEMD are that the added white
noise series cancel each other in the final mean of the corresponding IMFs; the
mean IMFs stay within the natural dyadic filter windows and thus significantly
reduce the chance of mode mixing and preserve the dyadic property.

To illustrate the procedure, the data in Fig. 1 is used as an example. If the
EEMD is implemented with the added noise having an amplitude of 0.1 standard
deviation of the original data for just one trial, the result is given in Fig. 3. Here, the
low-frequency component is already extracted almost perfectly. The high-frequency
components, however, are buried in noise. Note that high-frequency intermittent
signal emerges when the number of ensemble members increases, as Fig. 4 dis-
plays. Clearly, the fundamental signal C5 is represented nearly perfect, as well
as the intermittent signals, if C2 and C3 are added together. The fact that the
intermittent signal actually resides in two EEMD components is due to the aver-
age spectra of neighboring IMFs of white noise overlapping, as revealed by Wu
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Fig. 3. The modified input (the top panel), its intrinsic mode functions (C1–6), and the trend
of (R). In panel C5, the original input is plotted as the bold dashed gray line for comparison.

and Huang.6 Thus sometimes, the combination of two adjutant components to
form one IMF is necessary. The need for this type of adjustment is easily deter-
mined through an orthogonality check. Whenever two IMF components become
grossly unorthogonal, one should consider combining the two to form a single IMF
component.

This provides the first example to demonstrate that the NADA, using the EEMD
significantly, improves the capability of extracting signals in the data, and represents
a major improvement of the EMD method.

4. Real World Examples

The previous example introduced the concept of NADA using the EEMD method.
The question now is whether the EEMD indeed helps in reaching the ultimate goal
of data analysis: to isolate and extract the physically meaningful signals in data,
and thereby to understand the properties of data and its underlying physics. The
easiest way to demonstrate the power of the EEMD and its usefulness is to apply
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Fig. 4. The IMF-like components of the decomposition of the original input in the top panel of
Fig. 1 using the EEMD. In the EEMD, an ensemble member of 50 is used, and the added white
noise in each ensemble member has a standard deviation of 0.1. In the top panel, the mean of the
noise-modified input is plotted. In panel C5, the original input (gray line) is also displayed for
comparison.

to data of natural phenomena. In this section, EEMD is applied to two real cases:
the first one is climate data that define the interaction between atmosphere and
ocean; and the second one is a section of a high resolution digitalized sound record.
Both cases are complicated and have rich properties in the data. These data are
considered general enough to be the representatives of real cases.

4.1. Example 1: Analysis of climate data

The first set of data to be examined here is representative of an interacting air–
sea system in the tropics known as the El Niño-Southern Oscillation (ENSO)
phenomenon. The Southern Oscillation (SO) is a global-scale seesaw in atmospheric
pressure between the western and the southeastern tropical Pacific, and the El Niño
refers to variations in temperature and circulation in the tropical Pacific Ocean. The
two systems are closely coupled,24,25 and together they produce important climate
fluctuations that have a significant impact on weather and climate over the globe
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as well as social and economic consequences (see, e.g., Ref. 26). The underlying
physics of ENSO have been explained in numerous papers (see, e.g., Refs. 27–29).

The Southern Oscillation is often represented by the Southern Oscillation Index
(SOI), a normalized monthly sea level pressure index based on the pressure records
collected in Darwin, Australia, and Tahiti Island in the eastern tropical Pacific.30

It should be noted here that the Tahiti record used for the calculation of SOI is less
reliable and contains missing data prior to 1935. The Cold Tongue Index (CTI),
defined as the average large year-to-year SST anomaly fluctuations over 6◦N–6◦S,
180–90◦W, is a good representation of El Niño.31 A large negative peak of SOI,
which often occurs with a two- to seven-year period, corresponds to a strong El Niño
(warm) event. With its rich statistical properties and scientific importance, the SOI
is one of the most prominent time series in the geophysical research community and
has been well studied. Many time-series analysis tools have been used on this time
series to display their capability of revealing useful scientific information.6,32,33 The
specific question to be examined here is over what timescales are the El Niño and
the Southern Oscillation coupled?

The SOI used in this study is described in the works of Ropelewski and Jones34

and Allan et al.35 The CTI is based on the SST from January 1870 to December
2002 provided by the Hadley Center for Climate Prediction and Research,36 which
is refined from direct observations. The sparse and low-quality observations in the
early stages of the period make the two indices in the early stages less consistent
and their interrelationship less reliable, as reflected by the fact that the overall
correlations between the two time series is −0.57 for the whole data length, but
only −0.45 for the first half, and −0.68 for the second half. The two indices of the
second half are plotted in Fig. 5.

1870 1880 1890 1900 1910 1920 1930
−5

0

5
ORIGINAL DATA ( black: CTI; gray: SOI )

1940 1950 1960 1970 1980 1990 2000
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Fig. 5. The Southern Oscillation Index (gray line) and the Cold Tongue Index (black line).
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Fig. 6. The intrinsic mode functions and the trends of the Southern Oscillation Index (gray lines)
and the Cold Tongue Index (black lines). For the convenience of identifying their synchronization,
the CTI and its components are flipped in sign.

The decompositions of these two indices using the original EMD are plotted in
Fig. 6. Although SOI and CTI have a quite large correlation (−0.57), their corre-
sponding IMFs, however, show little synchronization. For the whole data length,
the largest negative correlation amongst the IMFs is only −0.43 (see Fig. 7), a
much smaller value than that of the correlation between the whole data of SOI and
CTI. Since the underlying physical processes that dictate the large-scale interaction
between atmosphere and ocean differ on various timescales, a good decomposi-
tion method is expected to identify such variations. However, the low correla-
tions between corresponding IMFs seem to indicate that the decompositions using
the original EMD on SOI and CTI help little to identify and understand which
timescales for the coupling between atmosphere and ocean in climate system in the
tropics are more prominent.

This lack of correlation clearly represents a typical problem of mode mixing in
the original EMD. From a visual inspection, it is easily seen that in almost any high-
or middle-scale IMF of SOI or CTI, pieces of oscillations having approximate periods
of those appear also in its neighboring IMFs. The mixing is also contagious: if it
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Fig. 7. The correlation coefficients of the SOI and CTI and their corresponding IMFs. IMF 0
here means the original signal. The asterisks are for the whole data length; the circles are for the
first half; and the diamonds for the second half. The horizontal axis plots the order of IMFs.

happens in one IMF, it will happen in the following IMFs at the same temporal
neighborhood. Consequently, mode mixing reduces the capability of the EMD in
identifying the true timescales of consistent coupled oscillations in the individual
IMF component in the ENSO system. This is clearly shown in Fig. 7, in which none
of the IMF pairs with a rank from 1 to 7 have a higher correlation than the full
data set.

To solve this problem and to identify the timescale at which the interaction
truly occurs, both time series were reanalyzed using the EEMD. The results are
displayed in Fig. 8. It is clear that the synchronizations between corresponding IMF
pairs are much improved, especially for the IMF components 4–7 in the latter half
of the record. As mentioned earlier, both SOI and CTI are not as reliable in the
first half of the record as those in the second half due to the sparse or missing
observations. Therefore, the lower degree of synchronization of the corresponding
IMF components of SOI and of CTI in the earlier half is not likely caused by EEMD,
but by the less consistent data of SOI and CTI in that period. To quantify this claim,
the detailed correlation values of the corresponding IMF pairs will be discussed next.

The detailed correlation between the corresponding IMF components of SOI
and CTI are displayed in Fig. 9. Clearly, the decompositions using the EEMD
improve the correlation values significantly. The EEMD results help greatly in the
isolation of signals of various scales that reflect the coupling between atmosphere
and ocean in the ENSO system. Consistently high correlations between IMFs from
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Fig. 8. The IMF-like components of the decompositions of the SOI (gray lines) and the CTI
(black lines) using the EEMD. In the EEMD, an ensemble size of 100 is used, and the added
white noise in each ensemble member has a standard deviation of 0.4. For the convenience of
identifying their synchronization, the CTI and its components are flipped in sign.

SOI and CTI on various timescales have been obtained, especially those of interan-
nual (components 4 and 5 with mean periods of 2.83 and 5.23 years, respectively)
and short interdecadal (components 6 and 7 with mean periods of 10.50 and 20.0
years, respectively) timescales. The increase of the correlation coefficients from just
under 0.68 for the latter half of the whole data to significantly over 0.8 for these
IMF pairs is remarkable. There has not yet been any other filtering method used
to study these two time series that has led to such high correlations between the
band-filtered results from published literature on all these timescales. (For the long
interdecadal timescales, especially for C8 and C9, since the number of degrees of
freedom of the IMF components is very small due to the lack of oscillation variations,
the correlation coefficients corresponding to them can be very misleading; therefore,
they should be ignored.) These results clearly indicate the most important coupling
between the atmosphere and the ocean that occurs on a broad range of timescales,
covering interannual and interdecadal scales from 2 to 20 years.
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Fig. 9. The correlation coefficients of the SOI and CTI and their corresponding IMF-like com-
ponents. IMF 0 here means the original signal. The triangles are for the whole data length; the
circles for the first half; and the diamonds for the second half. The asterisks are the same as
the corresponding asterisks in Fig. 7, i.e., the correlation coefficients of SOI and CTI and their
corresponding IMFs obtained with the original EMD for the whole data length. The horizontal
axis plots the order of IMFs.

The high correlations on interannual and short interdecadal timescales between
IMFs of SOI and CTI, especially in the latter half of the record, are consistent with
the physical explanations provided by recent studies. These IMFs are statistically
significant at 95% confidence level based on a testing method proposed by Wu and
Huang6,9 against the white noise null hypothesis. The two interannual modes (C4
and C5) are also statistically significant at 95% confidence level against the tradi-
tional red noise null hypothesis. Indeed, Jin et al. (personal communications, their
manuscript being under preparation) have solved a nonlinear coupled atmosphere–
ocean system and showed analytically that the interannual variability of ENSO
has two separate modes with periods in agreement with the results obtained here.
Concerning the coupled short interdecadal modes, they are also in good agreement
with a recent modeling study by Yeh and Kirtman,37 which demonstrated that
such modes can be a result of a coupled system in response to stochastic forcing.
Therefore, the EEMD method does provide a more powerful tool to isolate sig-
nals of specific timescales in observational data produced by different underlying
physics.
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4.2. Example 2: Analysis of voice data

In the previous example, the demonstration of power and confirmation of the useful-
ness of the EEMD was made through analyzing two different but physically closely
interacted subsystems (corresponding to two different data sets) of a climate sys-
tem. Such a pair of highly related data sets is rare in more general cases of signal
processing. Therefore, to further illustrate the EEMD as an effective data analysis
method in time–frequency domain for general purpose, we analyze a piece of speech
data using the EEMD. The original data, given in Fig. 10, shows the digitalized
sound of the word, “Hello,” at 22 050Hz digitization.38

The EMD components obtained from the original EMD without added noise is
given in Fig. 11. Here, we can see mode mixing from the second component and
down, where highly disparate amplitudes and scales are evident. The mode mixing
influences the scale parity in all the IMF components, though some are not as
obvious.

The same data was then processed with the EEMD with a noise selected at
an amplitude of 0.1 times that of the data RMS, and 1000 trials. The result is
a drastic improvement, as shown in Fig. 12. Here, all the IMF-like components
are continuous and without any obvious fragmentation. The third component is
almost the full signal, which can produce a sound that is clear and with almost
the original audio quality. All other components also have relatively uniform scales,
but the sounds produced by them are not intelligible: they mostly consist of either
high-frequency hissing or low-frequency moaning. The results once again clearly
demonstrate that the EEMD has the capability of catching the essence of data that
manifests the underlying physics.

The improvements on the quality of the IMFs also have drastic effects on the
time–frequency distribution of the data in Hilbert spectra, as shown in Figs. 13

Fig. 10. Digitalized sound of the word, “Hello,” at 22 050 Hz.
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Fig. 11. The IMFs (C1–C7, from the top to the bottom, respectively) of digitalized sound “Hello”
from the EMD without added noise. C7 includes all the low-frequency part not represented by
C1–C6. The mode mixing has caused the second and third components to intersperse with the
sections of data having highly disparate amplitudes and scales.

and 14 for EMD and EEMD results of the voice data, respectively. In the orig-
inal EMD, the mode mixings have caused the time–frequency distribution to be
fragmentary. The alias at the transition points from one scale to another is clearly
visible. Although the Hilbert spectra of this quality could be used for some general
purposes such as identifying the basic frequencies and their ranges of variation,
quantitative measures would be extremely difficult. The Hilbert spectrum from the
EEMD shows a great improvement. The mode mixing has almost completely dis-
appeared. There are almost no transition gaps, and all basic frequency traces are
continuous in the time–frequency space. It is noted here that to obtain the Hilbert
spectrum of EEMD components, the post-EEMD processing is applied, which is
described in Sec. 5.3.

For comparison, wavelet packet decomposition (WPD) result of “Hello” is pre-
sented in Fig. 15. In this decomposition, we have tried a few wavelets. We found that
“Meyer wavelet” provides the best results because of its oscillatory shape fitting
well to the local oscillations of voice. Since each component resulted from WPD has
a fixed scale, there is no scale-mixing problem. However, due to the rigidly fixed
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Fig. 12. Same as in Fig. 11, but the components are obtained using EEMD.

wavelet shape, part of voice that has local oscillation not matching the wavelet
shape cannot be represented well by the WPD decomposition.

To obtain an impression of how efficient are EMD, EEMD, and WPD to
catch the physically meaningful information hidden in voice data, the dominant
components from various decompositions are plotted in Fig. 16. In EMD decompo-
sitions, two different stoppage criteria are used: one is the repeat of three times
of S-number39 and the other is to fix the sifting number to 10. The effect of
different stoppage criteria on EMD decomposition will be discussed in App. A.
From a visual inspection, one may conclude that EEMD provides the most effi-
cient decomposition and WPD is the second. Indeed, the dominant EEMD com-
ponent represents a superb voice compared to those dominant components from
EMD and WPD. However, if the voices of the EMD and WPD components are
compared, one may conclude that EMD decomposition with local stoppage cri-
terion (a sifting number fixed to 10) is more efficient than WPD, implying that
the adaptive representation may be a better choice to represent the essence of
voice and the popular harmonic representation of voice (such as in WPD) has
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Fig. 13. The Hilbert spectrum from the original EMD without added noise. The mode mixing
has caused numerous transition gaps, and rendered the time–frequency traces fragmented.

fundamental drawbacks. However, when a global stoppage criterion (such as pre-
scribing S-number to 3) is used, the mode mixing is severe, and the dominant
component catches little of the essence of voice. (Readers who want to listen
to the voices of these dominant components, could contact the authors of this
paper.)

5. Some Issues of EEMD

The previous sections have introduced the EEMD method and its capability of
extracting physically meaning components from data. However, in EEMD, the num-
ber of ensemble and the noise amplitude are the two parameters that need to be
prescribed. In addition to that, since the ensemble mean of the corresponding IMFs
from individual EMD decomposition is not necessary an IMF, the Hilbert spectrum
analysis of EEMD components may not be feasible. In this section, we will discuss
these issues.
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Fig. 14. The Hilbert spectrum from the EEMD with added noise.

5.1. The number of ensemble for EEMD

The effect of the added white noise should decrease following the well-established
statistical rule:

εn =
ε√
N

, (6a)

or

ln εn +
ε

2
ln N = 0, (6b)

where N is the number of ensemble members, ε is the amplitude of the added noise,
and εn is the final standard deviation of error, which is defined as the difference
between the input signal and the corresponding IMF(s). Such a relation is clear
in Fig. 17, in which the standard deviation of error is plotted as a function of the
number of ensemble members. In general, the results agree well with the theoretical
prediction. The relatively large deviation for the fundamental signal from the the-
oretical line fitting is understandable: the spread of error for low-frequency signals
is large, as pointed by Wu and Huang.6
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Fig. 15. The wavelet components (C1–C9, from the top to the bottom, respectively) of digitalized
sound “Hello” from the EMD without added noise. C9 includes all the low frequency part not
represented by C1–C8. In the wavelet packet decomposition, “Meyer wavelet” is used.

In fact, if the added noise amplitude is too small, then it may not introduce the
change of extrema that the EMD relies on. This is true when the data have large
gradient. Therefore, to make the EEMD effective, the amplitude of the added noise
should not be too small. However, by increasing the ensemble members, the effect
of the added white noise can be reduced to a negligibly small level. In general, an
ensemble number of a few hundred will lead to a very good result, and the remaining
noise would cause only less than a fraction of 1% of error if the added noise has an
amplitude that is a fraction of the standard deviation of the original data.

5.2. The amplitude of added noise

Within a certain window of noise amplitude, the sensitivity of the decomposition of
data using the EEMD to the amplitude of noise is often small. In Figs. 18 and 19,
noise with a standard deviation of 0.1, 0.2, and 0.4 is added. The ensemble size for
each case is 100. Clearly, the synchronization between cases of different levels of
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Fig. 16. The original digitalized voice data (marked with “Hello”), the dominant components of
voice “Hello” from WPD (marked with “WPD”), from two EMD decompositions with different
stoppage criteria (a criterion of repeating 3 times of S-number marked with “EMD-s3,” see App. A
for more details, and a criterion of fixing sifting number to 10 marked with “EMD-f10”), and from
EEMD (marked with “EEMD”).

Fig. 17. The standard deviation of error as a function of the number of ensemble members. The
solid line is for the high-frequency intermittent signals, and the dashed line is for the low-frequency
fundamental signals. The dotted line is the theoretical line predicted by Eq. (6) with arbitrary
vertical location, used as a reference.
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Fig. 18. EEMD decompositions of SOI with added noise. Blue line corresponds to the standard
decomposition using EMD without any added noise. Red, green, and black lines correspond to
EEMD decompositions with added noise of standard deviation of 0.1, 0.2, and 0.4, respectively.
The ensemble number for each case is 100.

added noise is remarkably good, except the case of no noise added, in which mode
mixing produced an unstable decomposition. In the latter case, any perturbation
may push the result to a different state as studied by Gledhill.8 Additionally, the
improvement of the decomposition for CTI seems to be greater than that for SOI.
The reason is simple: SOI is much noisier than CTI, since the former is based on
noisy observations of sea level data from only two locations (Darwin and Tahiti
pressures) while CTI is based on the averaged observed sea-surface temperature at
hundreds of locations along the equator. This indeed indicates that EMD is a noise-
friendly method: the noise contained in the data makes the EMD decomposition
truly dyadic.

More decomposition of SOI and CTI with various noise levels and ensemble
members has been carried out. The results (not shown here) indicate that increasing
noise amplitudes and ensemble numbers alter the decomposition little as long as the
added noise has moderate amplitude and the ensemble has a large enough number
of trials. It should be noticed that the number of ensemble numbers should increase
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Fig. 19. EEMD decompositions of CTI with added noise. Blue line corresponds to the standard
decomposition using EMD without any added noise. Red, green, and black lines correspond to
EEMD decompositions with added noise of standard deviation of 0.1, 0.2, and 0.4, respectively.
The ensemble number for each case is 100.

when the amplitude of noise increases so as to reduce the contribution of added
noise in the decomposed results. The conclusions drawn for the decompositions
of SOI and CTI here are also true for other data tried with the EEMD method.
Therefore, the EEMD provides a sort of “uniqueness” and robustness result that
the original EMD usually could not, and it also increases the confidence of the
decomposition. In most cases, we suggest to add noise of an amplitude that is about
0.2 standard deviation of that of the data. However, when the data is dominated
by high-frequency signals, the noise amplitude may be smaller, and when the data
is dominated by low-frequency signals, the noise amplitude may be increased.

5.3. Post processing of EEMD components

As we mentioned earlier, the EEMD components of data are not necessarily IMFs,
for EEMD involves numerous summations of IMFs. For such components, the corre-
sponding Hilbert spectra can have significant alias. To overcome this drawback, we
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Fig. 20. The EEMD components of the LOD data (the gray line in the top panel) from 1 Jan
1980 to 31 Dec 1999. In the decomposition, noise of standard deviation 0.2 (absolute value, not
relative as in the case displayed in the previous figure) is added for the ensemble calculation, and
the ensemble number is 800.

propose an EEMD post-processing method using EMD. Figures 20 and 21 provide
such an example.

The data used in this example is the Length-of-Day (LOD) data. The LOD
was previously analyzed using HHT and studied by Huang et al.39 extensively. In
that study, an intermittency test was performed to properly separate oscillations of
different timescale when EMD is used to decompose the data. Here, we decompose
it using EEMD instead of EMD. The LOD data being decomposed here is from 1
Jan 1980 to 31 Dec 1999. LOD (or part of it) has previously been studied by many
researchers.40–44 Many problems associated with the previous analysis methods
were discussed by Huang and Wu,45 and the locality and adaptivity of EMD/EEMD
overcome the drawbacks described above.

The LOD data and its EEMD decomposition are displayed in Fig. 20. In this
figure, nine EEMD components (C1 to C9, with C4 and C5 combined), as well as
the low-frequency component are displayed over the LOD data, as discussed by
Huang and Wu (2008).
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The first component, C1, has an averaged amplitude of one order smaller than
any other components. It has quasi-regular spikes with an average period around
7 days superimposed on random high-frequency oscillations. These random high-
frequency oscillations may be related to weather storms.39 The second component,
C2, has an averaged period about 14 days, which was linked to semi-monthly tides.39

C3 has an averaged period of about 28 days, which was linked to monthly tides. The
combined component, C4+C5, is a component with periods between a month and
one-half years. C5 and C6 are semi-annual and annual components, respectively.
The causes of these cycles in LOD have been attributed to both the semi-annual
and annual cycles of the atmospheric circulation and to other factors, such as tidal
strength change related to the revolution of the Earth around the Sun.43 The next
two components are the variations between inter-annual timescales. C7 is quasi-
biannual, and C8 has an averaged period slightly larger than 4 years.

Careful examination of these components leads to the conclusion that these com-
ponents are not IMFs, and therefore, not suitable for Hilbert spectrum analysis. To
overcome this drawback, the direct output of the decomposition has been repro-
cessed with the combination of its components and additional EMD calculation.
Since the scale mixing is often caused by high-frequency intermittence, a gen-
eral approach is to apply EMD to a combination of consecutive components (e.g.,
Di and Di+1; for easier description, we here use D instead of C to represent a
component of direct EEMD results), extract one IMF which is Ci, and add the
remainder (Ri,i+1) to the next component (Di+2). The sum of the remainder and
the next component is subjected to EMD again. Such a process is carried out
consecutively.

For our example, the results of this process are displayed in Fig. 21. C1 in Fig. 21
is D1 in Fig. 20; C2 in Fig. 21 is the first mode of the combination of D2 and D3
of Fig. 20 subjected to additional EMD; the difference (D2+D2−C2) is added to
D4 of Fig. 20, and the sum is subject to an additional EMD to obtain new C3 of
Fig. 21. The leftover in this decomposition is added to D5 and D6. This latter sum
is decomposed using an additional EMD to obtain C4 and C5. The sum of D7, D8,
and D9 is decomposed using an additional EMD to obtain C6, C7, and C8. The
remainder of the LOD data is displayed as the bold line in the top panel.

This reprocess not only corrects the non-IMF problem of EEMD, but also leads
to new insights into the characteristics of components, as discussed by Huang and
Wu.45 For example, the amplitude of C2 in Fig. 21 has small semi-annual modu-
lation superimposed on a 19-year modulation. The 19-year modulation is believed
to be related to the Metonic cycle. The amplitude of C3 amplitude appears to be
relatively small in El Niño years. The systematic phase-locking of C8 of Fig. 21 to
El Niño phenomenon was also revealed.

It should be pointed out here that the post-processing process discussed above
only provides one choice. While it may improve the result, especially when a partic-
ular component is focused, the post-processing may not provide a complete solution
to every case for everyone.
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Fig. 21. The reprocessed EEMD components of the LOD data.

6. Discussion and Conclusions

The basic principle of the EEMD is simple; yet, the power of this new approach
is obvious from the examples. The new method indeed can separate signals of
different scales without undue mode mixing. Adding white noise helps to establish
a dyadic reference frame in the time–frequency or timescale space. The real data
with a comparable scale can find a natural location to reside. The EEMD utilizes all
the statistical characteristic of the noise: it helps to perturb the signal and enable
the EMD algorithm to visit all possible solutions in the finite (not infinitesimal)
neighborhood of the true final answer; it also takes advantage of the zero mean
of the noise to cancel out this noise background once it has served its function
of providing the uniformly distributed frame of scales, a feat only possible in the
time-domain data analysis. In a way, this new approach is essentially a controlled
repeated experiment to produce an ensemble mean for a nonstationary data as
the final answer. Since the role of the added noise in the EEMD is to facilitate the
separation of different scales of the input data without a real contribution to the
IMFs of the data, the EEMD is truly a NADA method that is effective in extracting
signals from the data.
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Although the noise-added analysis has been tried by the pioneers such as Flan-
drin et al.5 and Gledhill,8 there are crucial differences between our approach and
theirs. First, both Flandrin and Gledhill define the truth either as the results with-
out noise added, or as given in Eq. (2), which is the limit when the noise-introduced
perturbation approaches zero. The truth defined by EEMD is given by the number
in the ensemble approaching infinity, i.e.,

cj(t) = lim
N→∞

1
N

N∑
k=1

{cj(t) + αrk(t)}, (7)

in which

cj(t) + αrk(t) (8)

is the kth trial of the jth IMF in the noise-added signal, and the magnitude of the
added noise, α, is not necessarily small. But, the number of trials in the ensemble,
N , has to be large. The difference between the truth and the result of the ensemble is
governed by the well-known statistical rule: it decreases as one over the square-root
of N , as given in Eq. (6).

With the truth defined, the discrepancy, ∆, instead of the one given in Eq. (3),
should be

∆ =
m∑

j=1

( ∑
t

(E{cnj(t)} − cnj(t))2
)1/2

, (9)

in which E{ } is the expected value as given in Eq. (7).
It is proposed here that the EEMD indeed represents a major improvement over

the original EMD. As the level of added noise is not of critical importance, as long
as it is of finite amplitude to enable a fair ensemble of all the possibilities, the
EEMD can be used without any subjective intervention; thus, it provides a truly
adaptive data analysis method. By eliminating the problem of mode mixing, it also
produces a set of IMFs that bears the full physical meaning, and a time–frequency
distribution without transitional gaps. The EMD, with the ensemble approach, has
become a more mature tool for nonlinear and nonstationary time series (and other
one-dimensional data) analysis.

While the EEMD offers great improvement over the original EMD, there are still
some unsettled problems. The first one is a drawback of the EEMD: the EEMD-
produced results do not satisfy the strict definition of IMF. Although each trial in
the ensemble produces a set of IMF components, the sum of IMF is not necessar-
ily an IMF. The deviations from strict IMFs, however, are small for the examples
presented in this study, and have not interfered noticeably in the computation of
instantaneous frequency using Hilbert Transform or any other methods, as dis-
cussed by Huang et al.3 Nevertheless, these imperfections should be eliminated.
One possible solution is to conduct another round of sifting on the IMFs produced
by the EEMD. As the IMFs results from the EEMD are of comparable scales,
mode mixing would not be a critical problem here, and a simple sift could separate
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the riding waves without any problem. This topic will be discussed and reported
elsewhere.

The second problem associated with the EEMD is how to treat multi-mode
distribution of the IMFs. As discussed by Gledhill,8 the discrepancy between a
trial and its reference tends to show a bimodal (if not multi-modal) distribution.
Whenever a bimodal distribution occurs, the discrepancy values could be quite
large and the variance value would no longer follow the formula given by Eq. (6).
Although part of the large discrepancy could be possibly attributed to the selection
of reference as the unperturbed state, the selection of the reference alone cannot
explain all the variance and its distribution. The true cause of the problem may
be explained easily based on the study of white noise using the EMD by Wu and
Huang,6 in which the dyadic filter bank shows some overlap in scales. Signals having
a scale located in the overlapping region would have a finite probability appearing in
two different modes. Although the problem has not been fully resolved by far, some
alternative implementations of the sifting procedures can alleviate its severity. The
first alternative is to tune the noise level and use more trials to reduce the root-
mean-squared deviation. Gledhill’s results clearly show that this is possible, for the
“bimodal” distribution indeed tends to merge into a single, albeit wider, unimodal
distribution. The second alternative is the one used in majority cases in this study:
sift a low but fixed number of times (10 in this study and discussed in App. A) for
obtaining each IMF components. Constrained by the dyadic filter bank property of
EMD, this method would almost guarantee the same number of IMFs being sifted
out from each trial in the ensemble although the copies of added noise in various
trials are different. Both approaches have been tried in this study, but none avoids
the multi-mode problem totally. The true solution may have to combine the multi-
mode into a single mode, and sift it again to produce a proper single IMF. The
third approach is to use rigorous check of each component against the definition,
and divide the outcome into different groups according to the total number of
IMFs generated. Our experience is that the distribution of the number of IMFs
is quite narrow even with a moderate amount of noise perturbation. Then, the
peak of the distribution is adopted as the answer. We found all the approaches
acceptable, and their differences small. Further studies will be carried out on this
issue.

Finally, our experience in using the EEMD brought up two other previously
persisted problems for the EMD: the end effect and the stoppage criteria. Both the
problems and their solutions are discussed in App. A of this paper. The confidence
limit of the EMD-produced results have been addressed to some extent by Huang
et al.39 Here the EEMD provides an alternative, yet better, measure of confidence
limit, since the EEMD-produced decompositions are much less sensitive to the
stoppage criteria used and to the perturbations to data. As for the end effect,
the noise-added processes help to ameliorate the difficulty, for with the added noise
the end slope will be more uniformly distributed. Thus, the final results could avoid
a deterministic drift in one direction or the other.
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Appendix A: A Few Algorithm Issues of EMD

As is mentioned earlier, the EMD method has many unsettled issues. Among them,
the scale-mixing problem, the selection of a sifting stoppage criterion, and the
reduction of end effect are the most concerned ones. With EEMD, the scale-mixing
problem is alleviated and the physical uniqueness of the decomposition, to a large
degree, is provided, although the complete settlement of the scale-mixing problem
is still out of reach. However, the problems of the selection of a sifting stoppage
criterion and of the end problem remain open. In this Appendix, we will propose
some solutions to these two problems.

A.1. Local stoppage criteria

By far, commonly seen stoppage criteria include (1) A Cauchy-type criterion1 and
its variations (e.g., Shen et al.46); (2) An S-number criterion39; (3) A combined
global–local stoppage criterion.47 These criteria have been implemented in various
EMD algorithms and tested with a variety of data. Unfortunately, a common unde-
sired feature that these criteria lead to is that the decomposition is sensitive to
the local perturbation and to the addition of new data. An example is given in
Fig. A.1, in which two time series with some difference at the beginning of the data
are decomposed. The stoppage criterion for the sifting used in these decompositions
is a modified Cauchy-type criterion, i.e.,

Cr =

∑
i m2

ij∑
i h2

ij

, (A.1)

where hij is the prototype jth IMF after i rounds of sifting, and mij is the mean
of the upper and lower envelopes of hij . In the decompositions, a value of 0.0001
was selected for Cr.

It is clear that the decompositions are dramatically different. Moreover, the dif-
ference seems not to appear in a way that it can be considered as a gradual prop-
agation away from the original difference from the source area. Rather, it appears



September 24, 2008 18:45 WSPC/244-AADA 00004

34 Z. Wu & N. E. Huang

Table A.1. The actual sifting numbers in the decompositions to obtain an indi-
vidual IMF.

The first time series (bold gray) The second time series (thin black)

IMF #1 18 17
IMF #2 36 1125
IMF #3 26 22

quite irregularly over the whole temporal domain, starting from the second IMF.
This drawback is certainly against the perception that EMD is a local analysis
method, and also causes difficulty in the interpretation of the physical meaning of
individual IMF. What is going on in the two decompositions?

The answer to the question is rooted deeply in the sifting and its stoppage cri-
terion. To illustrate that point, the actual sifting numbers in the decompositions
of these two time series are investigated. Table A.1 gives the sifting numbers for
both decompositions. Since the stoppage criterion used in the decompositions con-
tains summations over the global domain, a local change in a prototype IMF may
result in a different actual sifting number to obtain the corresponding IMF. That
is indeed the case for the two decompositions. As shown in Table A.1, the actual
sifting numbers are dramatically different. The increment of the sifting number
can result in new local extrema if the prototype IMF contains “wiggles” locally
and new high-frequency oscillations appear. That is indeed the case occurring in
the decomposition of the second time series (thin-black), for example, the high-
frequency oscillations near data point 100 of the second IMF of the second time
series, causing new type of scale mixing. Such a process is the main source of the
“nonlocal effect” in the EMD sifting. Due to the limitation of length, more detailed
discussion will be provided elsewhere.

To eliminate this unpleasant effect of extra sifting, the solution is to use local
stoppage criteria. However, to design a universally well-suited local criterion based
on the spirits of previously mentioned criteria seems not likely. For this reason, Wu
and Huang,6 proposed to fix the sifting number for the decomposition. Since the
spline fitting to obtain the local envelope using only local extrema information, it
is expected that the remote effect is negligibly small when the same local process
(sifting) is applied to identical data. Indeed, this point can be easily demonstrated
through the decomposition of the same two time series in Fig. A.1, which is plotted
in Fig. A.2. Clearly, when the sifting number is fixed to 10, the decompositions of
two times are almost exactly the same outside the area in which the original data
have a difference.

The final question is what should be the optimal number. Our systematic study
of that problem shows that a number about 10 would lead to EMD being an almost
perfect dyadic filter for noise while keeping the upper and lower envelopes of IMFs
almost symmetric with respect to the zero line. That study also leads to a major
conjecture about the properties of EMD that EMD can be a filter of any ratio from
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Fig. A.1. The EMD decompositions of two time series with difference in the first 10% of data.
The original data of the first and second time series and their components are plotted as the
bold-gray and thin-black lines, respectively. The bold-black lines are the difference of two original

time series or of the corresponding individual IMFs.

1 to 2, which reveals the relationships of EMD with the Fourier transform and with
the wavelet analysis. The detailed report of that study will be published later in a
separate paper.

A.2. An ensemble approach to reduce end effects

End effects have caused problems to all known data analysis methods in the cal-
culation processes and in the interpretation of the results. Traditionally, there are
two types of thinking to deal with end effects. The first type is to analyze data
of a given length directly, but to interpret the results cautiously by determining
the windows within which the analysis is reliable. The determination of reliable
windows is often analysis-method-related but not related to data itself, leading to
throwing away some precious information contained in data near the ends. This
thinking has been often applied to analyze data in Fourier analysis by using various
windows and continuous wavelet analyses. The second thinking is to extend data
implicitly or explicitly beyond the existing range as proposed by Huang et al.1 For
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example, the Fourier transform, although applied only to the existing data range,
has an implicit assumption that the data of the existing range will repeat piecewise.
Other methods, such as neural networks, assume that some characteristics of the
existing data will hold in the future evolution of the system and devise a predicting
model to extend the data. All these approaches have demonstrated their useful-
ness in particular examples. However, due to various rigid stationary and linear
assumptions, these thinking can hardly deal well with the nonlinear nonstationary
data.

For EMD, the method of extending data beyond the existing range has been
often adopted so as to carry out the spline envelope fitting over and even beyond
the existing data range; otherwise, we have to stop the spline at the last extremum.
To achieve the goal of extension of data, numerous methods, such as the linear pre-
diction, mirror or anti-mirror extension, neural networks, and vector machines, to
name a few, have been used. While methods for extending data vary, the essence of
all these methods is to predict data, a dauntingly difficult procedure even for linear
and stationary processes. The problem that must be faced is how to make predic-
tions for nonlinear and nonstationary stochastic processes. To bypass difficulties in
data extension, new approach to alleviate end effects is in urgent demand.

0 50 100 150 200 250

Effect of Local Perturbation (sifting number fixed at 10)

Data 

C1 

C3 

C2 

R 

Fig. A.2. Same as in Fig. A.1, but with a fixed sifting number 10.
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Fig. A.3. A method to reduce the end effects of EMD. In the upper panel, the black line is
the schematic signal, and the dots (diamonds) are the maxima (minima) for the upper (lower)
envelope fitting. The lower left (right) panel is an enlargement of the left (right) end of the upper
panel. The upper (lower) gray line is the extended straight line that connects the last two maxima
(minima) near a data end.

The thinking behind our new approach was outlined by Huang and Wu,45 in
which they proposed that the necessary information needed to carry out the EMD
sifting is two values at the two ends of any prototype IMF, and to obtain that
information may not involve necessarily the prediction of data. This new thinking
is indeed the guideline for the following general method to reduce end effects.

The method is schematically presented in Fig. A.3. Suppose we have a signal
as plotted in black line in the upper panel. For such a signal, the interior extrema
are easily identified. However, these extrema are not enough to determine two well-
behaved fitting spline envelopes near the two ends for the sifting, especially in the
cases when the total number of splines are small, for the extrapolation of a spline
often leads to undesirable big error especially near the ends. Unfortunately, the
end error may propagate from the ends to the interior of the data span that would
cause severe deterioration of the IMFs obtained. To avoid this problem, we devise
a method to determine a maximum and a minimum at the end of a prototype IMF.
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The method is schematically illustrated in the lower panels of Fig. A.1. Suppose
that we have two maxima A and B that are closest to an end, we linearly extend
straight line AB to the end to find C. If C is larger than the end-point value E of
the prototype IMF, we consider C as a new maximum for the upper spline enve-
lope fitting (the case corresponding to the lower left panel of Fig. A.1), otherwise,
we consider E as a new maximum for the upper spline envelope fitting (the case
corresponding to the lower right panel of Fig. A.1). Similarly, we determine the
end point for the lower envelope fitting. In the cases when one only have one or no
interior maximum (minimum), the two ends of the prototype IMF are assigned as
two maxima (minima) for both the upper and lower envelope fittings, using either
the second-order polynomial or the linear fitting, respectively.

The above proposed method is simple but has behaved well in analyzing numer-
ous time series of dramatically different characteristics. However, when the targeted
time series ends with strangely behaved data, the end effect could still be noticeable.
However, the sensitivity to the strangely behaved data at the end of the targeted
time series is significantly reduced when this end approach is applied with EEMD.
Such a property is very important to obtain accurately the useful information in
data, especially in finding trend and detrending.48

It should be noted here that the reason to use linear extrapolation rather than
higher order polynomial extrapolation is (1) to keep the locality of the EMD, for
linear extrapolation needs only two maxima (minima) near an end; and (2) the
higher order polynomial extrapolation tends to lead to large deviations from visually
acceptable range of possible envelope ending at an end when it is used with EEMD.

Appendix B: A Matlab EMD/EEMD Code Package

During the past decade, EMD has become a tool of choice in many scientific
and engineering fields. While many users have developed by themselves EMD
programs in various computational languages for their own usage, there are also
a few web-accessible programs. Among them, the most influential two are pro-
duced by the Goddard Space Flight Center (http://tco.gsfc.nasa.gov/hht/) and by
Flandrin’s group (http://perso.ens-lyon.fr/patrick.flandrin/emd.html), which have
served many users in their research using EMD. However, many of recent develop-
ments of EMD have not been integrated into these software.

To further facilitate researchers from various scientific and engineering fields to
use EMD in their studies, we provide an alternative package of Matlab EMD/EEMD
program that can be easily used. The program integrates most of our recent devel-
opments of EMD, such as those discussed in this paper, and it includes the following
components:

1. The basic EMD/EEMD program;
2. The statistical significance test of IMFs; and
3. An EMD-based instantaneous frequency calculation method.

The program and its instructions can be downloaded from http://rcada.ncu.edu.tw/



September 24, 2008 18:45 WSPC/244-AADA 00004

Ensemble Empirical Mode Decomposition 39

References

1. N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, E. H. Shih, Q. Zheng, C. C. Tung and
H. H. Liu, The empirical mode decomposition method and the Hilbert spectrum for
non-stationary time series analysis, Proc. Roy. Soc. London 454A (1998) 903–995.

2. N. E. Huang, Z. Shen and R. S. Long, A new view of nonlinear water waves — the
Hilbert spectrum, Ann. Rev. Fluid Mech. 31 (1999) 417–457.

3. N. E. Huang and S. S. P. Shen (ed.), Hilbert–Huang Transform and Its Applications
(World Scientific, Singapore, 2005), p. 311.

4. N. E. Huang and N. O. Attoh-Okine (ed.), Hilbert–Huang Transform in Engineering
(CRC Press, 2005), p. 313.
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