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Abstract

Building the mathematical foundation for the empirical mode decomposition is an
important issue in adaptive data analysis. The task of building such a foundation consists
of two stages. The first is to construct a large bank of basis functions for the time-frequency
analysis of nonlinear and non-stationary signals. The second is to establish a fast adaptive
decomposition algorithm. We survey recent mathematical progress on these two stages.
Related results on piecewise linear spectral sequences and the Bedrosian identity are also
reviewed.
Keywords: empirical mode decomposition, the Hilbert-Huang transform, intrinsic mode
functions, mathematical foundation, spectral sequences, orthonormal bases, nonlinear
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1 Introduction

Since it was first introduced in [12], the empirical mode decomposition (EMD) has been found
useful applications in many engineering areas. Recently, EMD related mathematical problems
attracted much attention from the mathematical community (cf., [7, 16, 22, 23, 24, 25, 26, 29,
31, 32, 33, 34, 36, 37, 39]). These studies aim at better understanding the mathematical insight
of the algorithm, building a reasonable mathematical foundation for the method and improving
upon it. Establishing the mathematical foundation for EMD requires us to address two major
issues. The first is the construction of a large bank of basis functions which are suitable for the
time-frequency analysis of nonlinear and non-stationary signals. The second is the development
of fast adaptive decomposition algorithms for the representation of a given signal by the basis
functions. Although we have not obtained a complete answer to these issues, some interesting
partial answers have become available as a result of the study which took place in the last few
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years. The purpose of this paper is to review the recent mathematical development in this
interesting subject.

A fundamental problem in data analysis is to obtain an adaptive application-oriented rep-
resentation for a given data set. EMD is an efficient method for such adaptive representations.
Indeed, the original purpose of EMD is to decompose a signal into components, each of which
has meaningful instantaneous frequency, and different components correspond to different fre-
quency scales. EMD decomposes a signal into a finite sum of intrinsic mode functions (IMFs)
based on the direct extraction of the energy associated with various intrinsic time scales. Many
examples of using EMD show that the IMFs obtained from EMD provide physical insights
which are crucial in engineering applications. Due to the fully adaptive nature of the method,
it is particularly suitable for processing nonlinear and non-stationary signals.

We begin with a review of the notion of instantaneous amplitude and phase which are basic
concepts in the time-frequency analysis of signals. If a signal f can be written as

f(t) = ρ(t) cos θ(t), t ∈ R, (1.1)

where ρ ≥ 0, then we consider ρ and θ as the instantaneous amplitude and phase of f , re-
spectively. However, in general, there exist many pairs of ρ and θ with ρ ≥ 0 that satisfy
decomposition (1.1), see [21]. A classical way of defining without ambiguity the instantaneous
amplitude and phase of a real signal f ∈ L2(R) is through the Hilbert transform, which is
defined for each function f ∈ Lp(R), 1 ≤ p ≤ ∞, at t ∈ R as

(Hf)(t) := p.v.
1

π

∫

R

f(s)

t− s
ds :=

1

π
lim

ε→0+

N→∞

∫

ε≤|t−s|≤N

f(s)

t− s
ds, (1.2)

whenever the Cauchy principal value of the above singular integral exists. To form the analytic
signal, we define

Af := f + iHf.

By the theory of the Hilbert transform [5], Af has only nonnegative Fourier frequencies. Then
Af is further written as

(Af)(t) = ρ(t)eiθ(t), t ∈ R.

Finally, the ρ(t) and θ(t) above are defined as the instantaneous amplitude and phase of signal
f at time t, respectively. The derivative θ′ is regarded as the instantaneous frequency of f .
This method for obtaining the instantaneous amplitude and frequency of signals is called the
analytic method.

When the instantaneous frequency θ′ is nonnegative, we say that it is physically meaningful.
Signals should have special properties to ensure that their instantaneous frequency obtained
by the analytic method is physically meaningful. Therefore, we introduce a class of signals by
setting

M := {f ∈ L2(R) : f is real, (Af)(t) = ρ(t)eiθ(t), ρ ≥ 0, θ′ ≥ 0}. (1.3)

Recall that EMD aims at a decomposition of functions ψ having the properties that
(a) ψ has exactly one zero between any two consecutive local extrema
(b) the local mean of ψ is zero.
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Functions with properties (a) and (b) above are called intrinsic mode functions (IMFs) in [12].
According to [12], empirically an IMF has physically meaningful instantaneous frequency. To
provide more mathematical insight for IMFs, as a first step we consider functions in M as a
basic atom for HHT. For consistence, functions in M are still referred to as intrinsic mode
functions.

Building a mathematical foundation for EMD consists of two steps. The first is to formulate
mathematical characterizations of the functions in M and construct a large bank of functions
in M with explicit expressions. The second is to develop an adaptive and fast algorithm A for
decomposition of a real function f ∈ L2(R) into a monotone function and a sum of functions
in the bank constructed in the first step with the summand decaying fast. It seems that EMD
is a numerical approximation of the ideal algorithm A.

By far there are few mathematical efforts on the second step. A better understanding of
EMD from the study of its variations and extensions may provide some insight into the ideal
algorithm A. In Section 2, we introduce the recently developed one dimensional B-spline EMD
[7] and two dimensional finite element based EMD [36].

For the first step, the problem for constructing elements in M was proposed by the first
author in 2002. We are interested in finding ρ ∈ L2(R) and θ ∈ C1(R) that satisfy the nonlinear
singular integral equation

[H(ρ(·) cos θ(·))](t) = ρ(t) sin θ(t), t ∈ R (1.4)

subjected to the constraint

ρ(t) ≥ 0,
dθ(t)

dt
≥ 0, t ∈ R.

Along this line, the recent work [22] provides some mathematical insight to this problem. In
Section 3, we focus on the construction of functions in M. A mathematical characterization
[29] of property (a) will be discussed. Our main interest is in recent results on the singular
integral equation (1.4) from [22, 24, 31, 39].

In some sense, intrinsic mode functions can be viewed as basis functions for signal analysis.
They generally have nonconstant frequencies. This property partly accounts for the importance
and efficiency of IMFs in the time-frequency analysis of nonlinear and non-stationary signals.
It also suggests the study of orthonormal bases for the function space L2(A) with nonconstant
frequencies, where A is a Lebesgue measurable subset of R. We shall review in Section 4 the
results of [16] on orthonormal bases

fn := e2πign , n ∈ Z, (1.5)

for L2([0, 1]), where the phase functions gn are piecewise linear on [0, 1], and those in [8, 24, 31]
on orthonormal bases with smooth nonlinear phases for L2(R) and L2([0, 2π]).

The Bedrosian identity is an important mathematical formula in signal analysis. In particu-
lar, it is a useful tool for HHT. A study of the identity helps us better understand the condition
for the following important equality ([9, 12, 20, 21])

[H(ρ(·)eiθ(·))](t) = ρ(t)H(eiθ(·))(t).
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Moreover, it contributes to the construction of functions in M. To see this, we suppose that a
unimodular real signal cos θ(·) ∈M satisfies

[H(cos θ(·))](t) = sin θ(t), t ∈ R.

By finding a nonnegative function ρ ∈ L2(R) such that

H(ρ cos θ(·)) = ρH(cos θ(·)),

we obtain a new function ρ cos θ(·) ∈ M. In Section 5, we review recent results in [25, 31,
32, 33, 37, 38, 39] on the Bedrosian identity. Especially, we present necessary and sufficient
conditions for the Bedrosian identity to hold. We draw conclusive remarks in Section 6.

2 The B-spline EMD and 2-D Finite Element EMD

We review in this section the one dimensional B-spline EMD and two dimensional finite element
based EMD developed in [7] and [36], respectively. In the EMD algorithm, an important issue
is the construction of the local mean function of a given signal. The original EMD uses cubic
spline interpolation to construct the upper envelop function and lower envelop function of the
signal. They are then used to construct the local mean. However, overshooting of the envelops
is often observed in practical computation. This is because interpolation is not a good method
to compute the envelop functions. To be more specific, we define envelop functions. For a given
class A of functions defined on interval [a, b] and a given function f not in the class A the upper
envelop of f with respect to the class A is defined by

u(x) := inf{g(x) : g(y) ≥ f(y), y ∈ [a, b], for all g ∈ A}, x ∈ [a, b].

Likewise, the lower envelop of f with respect to the class A is defined by

`(x) := sup{g(x) : g(y) ≤ f(y), y ∈ [a, b], for all g ∈ A}, x ∈ [a, b].

Due to these definitions, it is not surprising that the cubic spline interpolation sometimes
provide unsatisfactory results for the envelops since it is not realistic to expect interpolation
gives good approximation for minimization or maximization. To overcome this difficulty, an
alternative method for generating a local mean function was suggested in [7, 36]. The main
purpose of this section is to discuss this alternative approach.

2.1 A general setting for EMD

We begin with the general setting for EMD described in [36]. This generalization helps us
understand the intrinsic properties of the EMD method and enables us to present the B-spline
EMD and 2-D finite element based EMD in a unified way. Let f ∈ L2(Rd), d ∈ N. We require to
have a compactly supported basis φj, j ∈ Z, for a subspace of L2(Rd). The subspace is adapted
to the given data f . As a result, the basis functions are also adapted to the given data f and
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will be used to construct the local mean surface of f . We also need the set P := {pj : j ∈ Z}
of points in a domain in Rd, which we call the characteristic points of f . They capture certain
features of the the given data. For example, they include the local extreme points for the 1-D
EMD, and the local extreme and saddle points for the 2-D EMD. Associated with the set of
characteristic points we define a smoothed linear functional of f(pj) by

λ(pj) := S ∗′ f(pj), (2.1)

where S is a generalized low-pass filter and ∗′ represents a generalized filtering operation.
Mathematically, λ(pj) is a linear functional using values of f at the characteristic points near
pj. Basically, we specify the generalized low-pass filter as a set of positive-valued weights and the
generalized filtering as a weighted sum of f(pj) and the function values of f at the neighboring
characteristic points near pj. In this way, the produced functional λ(pj) will be smoother than
f(pj) since the local variation of f(pj) is averaged.

The essence of the EMD method is to subtract the local mean from the data so as to
decompose the data into a high frequency and a low frequency component, namely, the local
mean. Using the adaptive basis functions φj, j ∈ Z, and the local smoothed functionals, we
define the local mean of the data f as

m(p) :=
∑

j∈Z
λ(pj)φj(p). (2.2)

Since φj has a compact support and the functional λ(pj) is defined locally, the local mean
capture the local feature of the given data. Note that we avoid using the “upper envelop”
and “lower envelop” in the definition of the local mean because mathematically they are not
well-defined by using spline interpolation, as we explained earlier.

The EMD method decomposes a signal into a finite sum of IMFs. In a general case, in
particular in the 2-D case, we will not impose a specific definition of an IMF. It should be
determined by a specific stopping condition in the sifting process for a specific application. We
now describe a general EMD algorithm. We extract the first intrinsic mode function by the
following steps:

(1) Find the characteristic points pj of f and compute values f(pj).

(2) Compute the smoothed set λ(pj) using equation (2.1).

(3) Compute the local mean m using equation (2.2).

(4) Compute h = f −m. If h satisfies a given stopping condition, stop. Otherwise, treat h as
the data and iterate on h.

The output of this algorithm is the first IMF and we denote it by c1 and specify r1 := f − c1 as
the first residue. By applying the above procedure to the first residue r1 we obtain the second
IMF c2. Repeat this process until a satisfactory result is obtained. The procedure generates a
sequence of IMFs c1, c2, . . . , cN and a residue function rN if it converges. All numerical results
confirm that the algorithm converges though it has not been proved mathematically. The basic
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idea of the EMD is to decompose a signal into the sum of IMFs with different scales and the
residue function so that c1 catches the highest frequency of f , c2 the second highest frequency
of f and rN the lowest frequency of f . Specifically, this procedure yields a decomposition

f =
∑

j∈NN

cj + rN , (2.3)

where Nn := {1, 2, . . . , n}, n ∈ N. We shall also use Zn := {0, 1, . . . , n− 1} and Z+ := {j ∈ Z :
j ≥ 0}.

A different way of defining the local mean gives a different method for construction of
EMD. The local mean can be defined by interpolation, by quasi-interpolation, or by other
approximation approaches. In fact this general setting covers the envelop approach, the original
EMD presented in [12], the B-spline approach in [7] and the two dimensional EMD by using
finite elements in [36]. Specific description for the B-spline EMD and the finite element EMD
will be given later. Here we only comment on the relation of the general setting and the original
envelop EMD. For the original EMD developed in [12], the basis functions are cubic splines
determined by the extreme points of the signal and the smoothed functional is the coefficients of
the cubic splines defined by the cubic spline interpolation. In this case, both basis functions and
the smoothed set are determined implicitly. Specifically, following [12], the local mean of the
given data f is defined by the average of the upper envelop and the lower envelop. Recalling that
both envelops are expressed by the cubic spline interpolation, they may be written as a linear
combination of the B-spline basis. Their coefficients in fact are certain smoothed functionals of
f at the local minima and maxima. Thus, the local mean so constructed falls into the general
setting that we just described. The general setting allows us to view the EMD in a more general
point of view.

2.2 The one dimensional B-spline EMD

In the B-spline EMD, the basis functions and the smoothed functionals are defined explicitly,
both being adapted to the given data f . For a given signal f , let σf := {σf

j : j ∈ Z} be its
extreme points. Note that in this case we choose the characteristic points as the extreme points
of f . The basis functions are chosen accordingly as B-splines Bj,k,σf defined by the kth order
divided difference

Bj,k,σf (t) := (σf
j+k − σf

j )[σf
j , . . . , σf

j+k](· − t)k−1
+ , t ∈ R,

where [σj, . . . , σj+k]g denotes the kth order divided difference of function g at nodes σj, . . . , σj+k.
B-splines can also be generated recursively [4]. Moreover, it is proved in [7] that the Hilbert
transform of B-splines has the same recurrence as the B-splines. Along this line, the translation
invariant operators which preserve the B-spline recurrence are characterized in [18].

The generalized low-pass filter is defined as the binomial sequence and the smoothed se-
quence of the local extrema is the moving average

λ(σf
j ) :=

1

2k−2

∑

l∈Nk−1

(
k − 1

l

)
f(σf

j+l).
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The local mean of f is hence given by

Vσf ,kf :=
∑

j∈Z
λ(σf

j )Bj,k,σf .

The local mean defined in this way has certain advantages over the approaches using envelopes.
It overcomes the overshooting problem of the upper and lower envelopes (see, [7]). Moreover,
it does not need to solve linear systems which the original EMD must do.

By the general EMD algorithm, the first IMF of a given signal f is obtained as follows: Let
f1,0 := f and compute for j = 1, 2, . . .,

f1,j := f1,j−1 − Vσf1,j−1 ,kf1,j−1

until ∑
t

|f1,j−1(t)− f1,j(t)|
f 2

1,j−1(t)
< SD,

where SD is typically set between 0.2 and 0.3. The last term f1,j is the desired first IMF of f .
The B-spline EMD is an alternative method for generation of IMFs which avoids using

envelops. Computationally, it does not have to construct two interpolations (upper envelop and
lower envelop) which require to solve linear systems. It only use multiplications of the basis
functions with the functionals. Hence, it requires significantly less computational cost than the
original EMD. It has been demonstrated in [7, 15, 26] by simulated examples and engineering
applications that the B-spline EMD has a comparable performance with the original EMD.

2.3 The two dimensional finite element based EMD

We now turn to a discussion of the two dimensional EMD. In this case, the basis functions are
smoothed linear finite element shape functions and the generalized low-pass filter is chosen as a
weighted average of the function values at the characteristic points around the point of interest,
where the characteristic points are chosen as the local extreme and saddle points of the given
date f . This construction is a natural extension of the 1-D B-spline EMD to the 2-D case. It
also overcomes the same overshooting problem arising in using the upper and lower envelopes
of interpolation for the construction of the local mean surface. Another reason to avoid using
2-D interpolation is that its computational cost can be huge.

We now review the 2-D finite element based EMD developed in [36]. Suppose that Ω ⊆ R2

is a closed polygonal domain and f ∈ L2(Ω). Let I denote an appropriate index set and we
denote by ∆ := {pj ∈ Ω : j ∈ I} the collection of the characteristic points of f . By using the
Delaunay method [28], the domain Ω is partitioned into a triangular mesh with vertices being
the characteristic points. In this triangular mesh, any triangle does not overlap with any other
triangles in the mesh, and a vertex of a triangle is not in the interior of an edge of another
triangle in the mesh. Hence, if pj ∈ ∆ is not on the boundary of Ω, then there are a finite
number of points ∆j ⊆ ∆ such that they are the vertices of the polygon surrounding pj and
no other points of ∆ except pj located interior to the polygon. For pj ∈ ∆, we let T` denote a
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triangle with the vertex pj and two other points in ∆j and let kj be the cardinality of ∆j. The
polygon Pj around pj has the form

Pj =
⋃

`∈Nkj

T`.

When pj ∈ ∆ is on the boundary of Ω, we need to extend the domain Ω appropriately so that
pj is an interior point of the extended domain.

The finite element basis functions are constructed associated with the triangle partition.
Mainly, to each j ∈ I, we assign a basis shape function φj in the following manner: Outside
the polygon Pj, φj is equal to zero and on each T` it is a linear polynomial satisfying the
interpolation conditions

φj(p) =

{
1, if p = pj,
0, if p ∈ ∆j.

(2.4)

Clearly, the function φj ∈ C(Ω) is a piecewise linear polynomial defined on Ω supported on the
polygon Pj. They are finite element shape functions and have been used extensively in numerical
solutions of partial differential equations and computer aided geometric design. Following the
general setting we need smoothed functionals λ(pj), which are chosen in this case as a weighted
average of the values of the signal f at the neighboring characteristic points of the point pj. A
specific example of the smoothed functional is as follows

λ(pj) := αf(pj) + (1− α)
1

kj

∑
p∈∆j

f(p), (2.5)

where the parameter α controls the degree of the smoothing and it is chosen empirically.
A local mean surface is constructed accordingly by setting

m̃ :=
∑
pj∈∆

λ(pj)φj. (2.6)

To see the locality of the mean function defined above, we let T be a triangle element with
vertices pi, pj, pk of the triangularization for domain Ω. It is clear that due to the compact
support of the shape functions, only three shape functions φi, φj, φk are nonzero at an interior
point of T . In particular, for p ∈ T , we observe that

m̃(p) = λ(pi)φi(p) + λ(pj)φj(p) + λ(pk)φk(p). (2.7)

This locality leads to a fast algorithm for computation, since the mean m̃ can be evaluated
locally. Note that however, the surface generated by equation (2.6) or (2.7) is continuous but
not smooth (i.e., it is in C0 but not in C1). This may consequently introduce additional sharp
structures into the data. To avoid additional new oscillations that may introduce artificial
frequency information, a smooth local mean m is desirable for application purposes. We may
choose to use smooth higher order finite elements to overcome this problem. Using higher order
finite elements may result in significant increase of the computational cost. An alternative idea
was proposed in [36] which is to apply a smoothing filter to m̃ in order to obtain a new smooth
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mean m, avoiding the use of higher order finite elements. Namely, we will use a specially
designed bi-cubic spline interpolation m of m̃ so that the new mean m is smooth, it preserves
the crucial properties of m̃, and the additional computational cost is as small as possible. The
interested readers are referred to [36] for the construction of the smoothing filter.

The 2-D finite element based EMD has been confirmed by numerical studies to be a use-
ful and efficient algorithm. Numerical experiments using both simulated and practical texture
images in [36] show that it is able to separate components of different scales from images. More-
over, it was used in [36] to detect defects in raw textiles. More recent interesting developments
in multi-dimensional EMD are found in [3, 14, 19, 35].

3 Characterizations and Constructions of IMFs

Many research results (cf. [12]) show that the Fourier transform is not suitable for the time-
frequency analysis of nonlinear and non-stationary signals. In practice, the Fourier transform
requires that the signal under consideration is stationery and linear, see [12]. It was observed
in [12] that comparing with non-stationarity, nonlinearity of signals affects much more the
soundness of the time-frequency analysis by the Fourier transform. A promising method for
the time-frequency analysis of stationary but nonlinear signals is through the circular Hilbert
transform, which is defined for each g ∈ L1

2π at t ∈ [0, 2π] as

(H̃f)(t) := p.v.
1

2π

∫ π

−π

f(t− s) cot
s

2
ds := lim

ε→0+

1

2π

∫

ε≤|s|≤π

f(t− s) cot
s

2
ds

if the Cauchy principal value of the above singular integral exists. Here Lp
2π, 1 ≤ p ≤ ∞,

denotes the set of the 2π-periodic functions g whose restriction in [0, 2π] belongs to Lp([0, 2π]).
To give a brief presentation of the method, we introduce

M̃ := {f ∈ L2
2π : f is real, (Ãf)(t) = ρ(t)eiθ(t), ρ ≥ 0, θ′ ≥ 0}, (3.1)

where for each real function f ∈ L2
2π,

Ãf := f + iH̃f.

If a real signal f ∈ L2
2π can be decomposed into a finite sum of functions in M̃ then a time-

frequency-energy distribution of f can be formed by applying the circular Hilbert transform to
each decomposed function in M̃.

It is worthwhile to point out that properties (a) and (b) stated in Section 1 are not sufficient

for a 2π-periodic function to belong to M̃. This fact was discovered in [29], where it was proved
that a real function f ∈ C2[a, b] has property (a) if and only if it is a solution of a self-adjoint
ordinary differential equation

d

dt
(P

df

dt
)(t) + Q(t)f(t) = 0, t ∈ (a, b),

where P ∈ C1[a, b], Q ∈ C[a, b] are strictly positive. Several examples of 2π-periodic functions

were constructed in [29]. Those functions are of properties (a) and (b) but not in M̃.
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Similar to that for M, a way of construction of functions in M̃ is to solve the nonlinear
singular integral equation

[H̃(ρ(·) cos θ(·))](t) = ρ(t) sin θ(t), t ∈ [0, 2π] (3.2)

subjected to

ρ(t) ≥ 0,
dθ(t)

dt
≥ 0, t ∈ [0, 2π]. (3.3)

The main purpose of this section is to introduce recent results on singular integral equations
(1.4) and (3.2) from [22, 25, 31, 34, 39].

We need some preliminaries on Hardy spaces, [10, 11, 27]. Let C+ := {z ∈ C : Im (z) > 0},
D := {z ∈ C : |z| < 1} and T := {z ∈ C : |z| = 1}. Denote by H(D) and H(C+) the set of
all the holomorphic functions on D and C+, respectively. We introduce the Hardy spaces by
setting for 0 < p < ∞

Hp(D) :=

{
f ∈ H(D) : sup

{∫ 2π

0

|f(reit)|pdt : r ∈ (0, 1)

}
< ∞

}

and

Hp(C+) :=

{
f ∈ H(C+) : sup

{∫

R
|f(x + iy)|pdx : y > 0

}
< ∞

}
.

For p = ∞, we let

H∞(D) := {f ∈ H(D) : sup{|f(z)| : z ∈ D} < ∞}
and

H∞(C+) := {f ∈ H(C+) : sup{|f(z)| : z ∈ C+} < ∞} .

Each function f ∈ Hp(D) or Hp(C+), 0 < p ≤ ∞, has a non-tangential boundary limit in
Lp(T) or Lp(R), respectively. The boundary limit is still denoted by f . With this convention,
we call a function f ∈ H∞(D) an inner function provided that |f | = 1 almost everywhere on
T. An interesting class of inner functions on D is the Blaschke products. Such functions are
given by

B(z) := zk
∏

n∈N

|zn|
zn

zn − z

1− z̄nz
, z ∈ D,

where k ∈ Z+, {zn : n ∈ N} ⊆ D\{0} satisfies that
∑

n∈N
(1− |zn|) < ∞.

A characterization for inner functions on D can be found in [10, 11, 27]. The Blaschke product
and inner function on C+ are obtained from their counterparts on D through the Cayley
transform

K(w) :=
i− w

i + w
, w ∈ C+,

which is a conformal mapping from C+ to D.
The subsequent characterizations of the singular integral equations (1.4) and (3.2) were

given in [22].
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Theorem 3.1 Let 1 ≤ p ≤ ∞, ρ ∈ Lp
2π be real and θ a real Lebesgue measurable function on

[0, 2π]. Then ρ, θ satisfy the singular integral equation (3.2) if and only if

ρ(t)eiθ(t) = f(eit), t ∈ [0, 2π]

for some f ∈ Hp(D) with Im f(0) = 0. In particular, for the unimodular case that ρ ≡ 1,
(3.2) holds if and only if eiθ(·) is the boundary value of an inner function f on D such that
Im f(0) = 0.

Theorem 3.2 Let 1 ≤ p < ∞, ρ ∈ Lp(R) and θ be a Lebesgue measurable function on R.
Then ρ, θ satisfy singular integral equation (1.4) if and only if ρeiθ(·) is the boundary value of
some function in Hp(C+).

A definition of the Hilbert transform of functions in L∞(R) using harmonic representations
of distributions was proposed in [22]. Under this definition, similar results as those for equation
(3.2) hold for equation (1.4) when p = ∞. More details for this case can be found in [22].

Solutions of (1.4) and (3.2) with explicit expression are desirable in engineering applications.
In the unimodular case, an important class of phases θ with explicit form satisfying (1.4) or
(3.2) are provided by finite Blaschke products (see, for example, [27]). Here, we consider those
on [0, 2π] of the form

eiθ(t) =
∏

j∈Nn

eit − λj

1− λjeit
, t ∈ [0, 2π], (3.4)

where n ∈ N, λj ∈ [0, 1), j ∈ Nn, and phase functions θ on R determined by

eiθ(t) =
1 + it√
1 + t2

∏

j∈Nn

ei2 arctan t − λj

1− λjei2 arctan t
, t ∈ R. (3.5)

It can be verified that θ given above have a nonnegative first derivative. This implies that the
instantaneous frequency of cos θ(·) obtained by the Hilbert transforms is physically meaningful.

Let θ be specified explicitly by (3.4) or (3.5). Functions ρ ∈ L2
2π or L2(R) satisfying (3.2)

or (1.4) can be obtained by solving the Bedrosian identity

H̃(ρ cos θ(·)) = ρH̃(cos θ(·)) (3.6)

or
H(ρ cos θ(·)) = ρH(cos θ(·)). (3.7)

This was carried out in [24] based on new necessary and sufficient characterizations for the
Bedrosian identities. We summarize the obtained results below.

Proposition 3.3 Let θ be defined by (3.4) with λj ∈ [0, 1), j ∈ Nn. Then a real ρ ∈ L2
2π

satisfies (3.6) if and only if there exists bj ∈ C, j ∈ Zn−1 and bn−1, c ∈ R, such that

ρ(t) = Re

(
eit

∑
j∈Zn

bje
ijt

∏
j∈Nn

(1− λjeit)

)
+ c, t ∈ [0, 2π].
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Proposition 3.4 Let θ be given by (3.5) with λj ∈ [0, 1), j ∈ Nn. Then a real function
ρ ∈ L2(R) satisfies (3.7) if and only if there exists bj ∈ C, j ∈ Nn and c ∈ R such that

ρ(t) =
1√

1 + t2

(
Re

( ∑
j∈Nn

bje
i2j arctan t

∏
j∈Nn

(1− λjei2 arctan t)

)
+ c

)
, t ∈ R.

Similar results to those in the above two propositions were obtained in [31]. Solutions ρ of
(3.6) and (3.7) when the phase function θ is defined by a single Blaschke product were first
discovered in [39].

4 Orthonormal Bases with Nonconstant Frequencies

Motivated by Huang’s work [12] on representing nonlinear and non-stationary signals by adap-
tive decomposition, the recent papers [8, 16, 24, 31] aim at developing orthonormal bases for
L2(A) with nonconstant frequencies, where A is a Lebesgue measurable subset of R. We start
with reviewing the orthonormal bases (1.5) for L2([0, 1]) constructed in [16] that have piecewise
constant frequencies.

The basic concept introduced in [16] is the spectral sequence. A sequence of real-valued
functions gn, n ∈ Z, defined on [0, 1], is called a spectral sequence of [0, 1] if the exponential
function system fn, n ∈ Z, defined by (1.5) in terms of gn is an orthonormal basis for L2([0, 1]).
In some sense, the EMD is an adaptive numerical method for the construction of spectral
sequences.

The piecewise linear spectral sequence gn with the knot at 1/2 was constructed in [16].
Specially, it was characterized in [16] the condition for the phase functions having the form

gn(t) :=

{
ant + bn, t ∈ [0, 1

2
),

cnt + dn, t ∈ [1
2
, 1],

(4.1)

where an, bn, cn, dn ∈ R, to be a spectral sequence of [0, 1]. We present below a main result in
[16].

Theorem 4.1 Suppose that gn, n ∈ Z, is defined by (4.1) with g0 = 0 and let G := {gn : n ∈
Z}. If the cardinality #{n ∈ Z \ {0} : an = 0} > 0 then gn, n ∈ Z, is a spectral sequence of
[0, 1] if and only if G = {un, vn : n ∈ Z}, where un, vn are defined by

un(t) :=

{
2nt + bn, t ∈ [0, 1

2
),

cnt + dn, t ∈ [1
2
, 1],

vn(t) :=

{
2nt + b′n, t ∈ [0, 1

2
),

cnt + d′n, t ∈ [1
2
, 1],

with constants bn, cn, dn, b′n, d′n satisfying the conditions that {cn : n ∈ Z} = 2Z, cn 6= cm for
n 6= m and (b′n − d′n)− (bn − dn) ∈ Z+ 1

2
. If #{n ∈ Z \ {0} : an = 0} = 0 and an = cn, n ∈ Z,

then gn, n ∈ Z, is a spectral sequence of [0, 1] if and only if G = {un, vn : n ∈ Z}, where un, vn

are defined by

un(t) :=

{
2nt + bn, t ∈ [0, 1

2
),

2nt + dn, t ∈ [1
2
, 1],

vn(t) :=

{
(2n + c)t + b′n, t ∈ [0, 1

2
),

(2n + c)t + d′n, t ∈ [1
2
, 1],
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with constants bn, dn, b
′
n, d

′
n and c satisfying the conditions that bn − dn ∈ Z, b′n − d′n ∈ Z+ 1−c

2

and c ∈ R \ 2Z.

It was also discovered in [16] that the spectral sequences gn, n ∈ Z, of form

gn(t) :=

{
ant + bn, t ∈ [0, θ),
cnt + dn, t ∈ [θ, 1],

(4.2)

where an, bn, cn, dn ∈ R and θ ∈ (0, 1), can not be continuous except for the classical case.

Theorem 4.2 Suppose that gn, n ∈ Z, defined by (4.2) with g0 = 0 is a continuous spectral
sequence of [0, 1]. Let G := {gn : n ∈ Z}. Then G = {hn : n ∈ Z} where hn(t) = nt + bn,
t ∈ [0, 1], bn ∈ R, n ∈ Z.

The classical Walsh system can be constructed from a special piecewise constant spectral
sequence of [0, 1]. This was done in [16] by setting g0 = 0 on [0, 1] and for j ∈ Z2n , n ∈ N
recursively

g2n+j(t) :=

{
gj(t), t ∈ [tn,2k, tn,2k+1), k ∈ Z2n ,

gj(t) + 1
2
, t ∈ [tn,2k+1, tn,2k+2), k ∈ Z2n ,

where

tn,k :=
k

2n+1
, k ∈ Z2n+1+1.

Theorem 4.3 Let gn, n ∈ Z+, be given as above. Then gn, n ∈ Z+, is a spectral sequence of
[0, 1] and fn, n ∈ Z+, given by

fn(t) := e2πign(t), t ∈ [0, 2π],

is the Walsh system on [0, 1].

The spectral sequences constructed in [16] are piecewise linear and discontinuous. Other
classes of nonlinear spectral sequences are desirable. We are particularly interested in con-
structing smooth nonlinear spectral sequences, hoping that they are better than linear spectral
sequence of the classical Fourier basis in representing a nonlinear signal.

Set L2
r(R) := {f ∈ L2(R) : f is real}. For the purpose of decomposing an arbitrary function

in L2
r(R) into a sum of functions in M, references [24, 31] studied the construction of orthonor-

mal bases for L2
r(R) with the basis functions coming from M. To this end, it was first observed

in [24] that such constructions can be reformulated into the constructions of orthonormal bases
for H2(C+). Here we note that H2(C+) is a Hilbert space with the inner product

〈f, g〉H2(C+) :=

∫

R
f(t)g(t)dt, f, g ∈ H2(C+).

13



Theorem 4.4 Let ρj ∈ L2(R) be nonnegative and θj real Lebesgue measurable functions on
R+, j ∈ Z+. Functions ρj cos θj, ρj sin θj, j ∈ Z+, satisfy

H(ρj(·) cos θj(·))(t) = ρj(t) sin θj(t), t ∈ R, j ∈ Z+ (4.3)

and constitute an orthonormal basis for L2
r(R) if and only if there exists an orthonormal bases

{Mj ∈ H2(C+) : j ∈ Z+} for H2(C+) such that

Mj(t) =
1√
2
ρj(t)e

iθj(t), t ∈ R, j ∈ Z+.

In light of the above theorem, two general methods of constructing orthonormal bases for
H2(C+) were proposed in [24]. The first one of them is presented below.

We denote for an f ∈ H∞(C+) by H2
f (C+) the Hilbert space completed upon the linear

space of functions in H2(C+) under the inner product

〈g, h〉H2
f (C+) :=

∫

R
g(t)h(t)|f(t)|2dt, g, h ∈ H2(C+).

Theorem 4.5 Suppose that f1, f2 ∈ H2(C+) satisfy that f1/f2 ∈ H∞(C+) and f1 is an outer
function. If ej ∈ H2(C+), j ∈ Z+, form an orthonormal basis for H2

f1/f2
(C+), then f1

f2
ej, j ∈ Z+,

form an orthonormal basis for H2(C+).

To present the second one, we let the finite Blaschke product associated with a finite number
of points zj ∈ C+, j ∈ Nn, be the analytic function f on C+ defined by

f(z) :=
∏

j∈Nn

z − zj

z − zj

, z ∈ C+.

The construction starts with the selection of a sequence of functions fn ∈ H∞(C+), n ∈ N,
with the properties that fn(i) = 0 and

fn(t) =

(
hn

gn

)
(t), t ∈ R, n ∈ N,

where hn, gn are analytic functions on C+ with gn having at least one but a finite number of
zeros in C+. We then let bn be the finite Blaschke product associated with the zeros of gn in
C+, n ∈ N. Finally, we define

β0(z) :=
1√
π

1

1− iz
, βn(z) :=

1√
π

1

1− iz
fn(z)

∏

j∈Nn−1

bj(z), z ∈ C+, n ∈ N. (4.4)

Here we denote N0 := ∅. The following result proved in [24] ensures that we obtain an orthogonal
sequence in H2(C+).

Theorem 4.6 The functions βn, n ∈ Z+, constructed by (4.4) are orthogonal in H2(C+).
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Completeness of a basis constructed in Theorem 4.6 should be analyzed based on the par-
ticular choice of fn, n ∈ N.

Two explicit examples of orthonormal bases for L2
r(R) followed from the two general con-

structions Theorems 4.5 and 4.6 were provided in [24]. To introduce the first one, we fix a ∈ C+

and ar := Re (a), ai := Im (a), b := K(a) and

ν :=
1√
π

√
1− |b|2
|1 + b| .

Also denote for each λ ∈ D by ζλ the real function on [0, 2π] defined by

eis − λ

1− λ̄eis
= eiζλ(s), s ∈ [0, 2π].

It can be computed that

ζ ′λ(s) =
1− |λ|2

1− 2 Re (λe−is) + |λ|2 , s ∈ (0, 2π).

Setting

ρj(t) :=
ν√

(t− ar)2 + a2
i

, θj(t) := jζb(2 arctan t) + arctan
t− ar

ai

, t ∈ R, j ∈ Z+,

we obtain that for t ∈ R, functions

(ρj cos θj)(t) =
νai

(t− ar)2 + a2
i

cos(jζb(2 arctan t)) +
ν(ar − t)

(t− ar)2 + a2
i

sin(jζb(2 arctan t)),

and

(ρj sin θj)(t) =
ν(t− ar)

(t− ar)2 + a2
i

cos(jζb(2 arctan t)) +
νai

(t− ar)2 + a2
i

sin(jζb(2 arctan t)),

j ∈ Z+, form an orthonormal basis for L2
r(R) that satisfies (4.3) and θ′j > 0, j ∈ Z+.

To prepare for the second example, we choose pairwise distinct dn ∈ C+, n ∈ N that satisfy

∑

n∈N
(1− |K(dn)|) = +∞.

Set dn,r := Re (dn), dn,i := Im (dn), bn := K(dn), n ∈ N, and

ωn := ζ0 +
∑

j∈Nn−1

ζbj
, n ∈ N.

The following functions
1√
π

1

1 + t2
,

1√
π

t

1 + t2
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√
dn,i

π

dn,i

(t− dn,r)2 + d2
n,i

cos(ωn(2 arctan t)) +

√
dn,i

π

dn,r − t

(t− dn,r)2 + d2
n,i

sin(ωn(2 arctan t)), n ∈ N

and
√

dn,i

π

t− dn,r

(t− dn,r)2 + d2
n,i

cos(ωn(2 arctan t)) +

√
dn,i

π

dn,i

(t− dn,r)2 + d2
n,i

sin(ωn(2 arctan t)), n ∈ N,

form an orthonormal basis for L2
r(R). Clearly, the phase of each of the basis functions has a

positive derivative.
We remark that Theorems 4.4, 4.5, and 4.6 were extended for L2

2π in [24]. Explicit examples
satisfying the general constructions can be found, for example, in [8, 31]. Fast algorithms of
decomposing an arbitrary function in L2

2π into a sum of the basis functions were developed in
[34].

5 The Bedrosian Identity

The Bedrosian identity is a formula to compute the Hilbert transform of the product of two
functions. It plays an important role in the development of HHT and other areas of signal
processing [12]. In connection with the development of EMD, there has been significant interest
in understanding to what extend the Bedrosian identity holds. Studies on variations and
extensions of the Bedrosian identity can be found in [6, 7, 23, 25, 30, 31, 32, 33, 37, 38, 39]. In
this section, we review several important results in this direction.

The classical Bedrosian identity is

[H(fg)](x) = f(x)(Hg)(x), a.e. x ∈ R, (5.1)

where f, g ∈ L2(R). In [1], Bedrosian gave a sufficient condition for (5.1). To state the
important result, we need to introduce the Fourier transform F defined for each f ∈ L2(R) at
ξ ∈ R as

f̂(ξ) := (Ff)(ξ) :=

∫

R
f(x)e−iξxdx.

We also denote by supp f the support of a Lebesgue measurable function f on Rd, d ∈ N.

Theorem 5.1 Let f, g ∈ L2(R). If either supp f̂ ⊆ [−a, a], supp ĝ ⊆ (−∞,−a] ∪ [a,∞) for
some a ∈ R+ := [0,∞) or supp f̂ ⊆ R+, supp ĝ ⊆ R+ then identity (5.1) holds.

The above theorem is known as the Bedrosian theorem and has wide applications in time
frequency literature (see, e.g., [9, 12, 21]). Recent mathematical interests in the Bedrosian
identity are motivated by [37], which studies the necessary and sufficient conditions for which
the Bedrosian identity is valid. The first characterization for functions that satisfy the Bedrosian
identity (5.1) was developed in [37], which we present below.

16



Theorem 5.2 If f, f ′, g ∈ L2(R) then the Hilbert transform of function fg satisfies the Bedrosian
identity(5.1) if and only if

∫ 0

−1

∫

R

ξ

t2
eixξ(t+1)/tf̂

(
ξ

t

)
ĝ(ξ)dξdt = 0. (5.2)

A sufficient condition was derived from (5.2) in the same paper, which states that if f, g ∈
L2(R) are such that

µ
(
{tξ : ξ ∈ supp f̂ , t ∈ [−1, 0]} ∩ supp ĝ

)
= 0 (5.3)

then the Bedrosian identity (5.1) holds, where µ denotes the Lebesgue measure on R. The
classical Bedrosian theorem is a special case of this result.

The significance of Theorem 5.2 is that it serves as a base for further study of the Bedrosian
identity. Motivated by Theorem 5.2, a new necessary and sufficient condition was proved in
[39].

Theorem 5.3 If f, g ∈ L2(R) then the Bedrosian identity (5.1) holds if and only if

∫

R+

(τ ∗ξ f̂)(η)ĝ(−η)dη = 0, ξ ∈ R+ (5.4)

and ∫

R−
(τ ∗ξ f̂)(η)ĝ(−η)dη = 0, ξ ∈ R− := (−∞, 0], (5.5)

where τ ∗ξ is the adjoint of the translation operator τξ that is defined for each ξ ∈ R and f ∈ L2(R)
by τξf := f(· − ξ).

It can be seen by Theorem 5.3 that the Bedrosian identity (5.1) is closely related to the
closed left translation invariant subspace of L2(R+), that is, the closed subspace M⊆ L2(R+)
such that τ ∗y (M) ⊆M for each y ∈ R+. By the similarity between (5.4) and (5.5), we use (5.4)

for explanation. For each h ∈ L2(R) we set h+ := h ·χR+ and h− := h ·χR− . If supp f̂ ⊆ [−a, a]
for some a ∈ R+ then

span {τ ∗y f̂+ : y ∈ R+} ⊆ Ma := {h ∈ L2(R+) : supp h ⊆ [0, a]}.

The Bedrosian theorem is essentially a consequence of the fact that Ma is a closed left transla-
tion invariant subspace of L2(R+). Studies on other closed left translation invariant subspaces
of L2(R+) would yield more sufficient conditions for the Bedrosian identity. In particular, an
investigation in [39] on the condition for span {τ ∗y f̂+ : y ∈ R+} to be finite dimensional results
in a class of functions f, g satisfying the Bedrosian identity (5.1).

Based on Theorem 5.3, a class of functions f, g ∈ L2(R) with explicit expressions that satisfy
the Bedrosian identity (5.1) was constructed in [39]. As a consequence, it was observed there
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that the sufficient conditions in the Bedrosian theorem 5.1 are not necessary for the Bedrosian
identity to hold. To see this, we present one pair of f, g in this class. Set

f(t) :=
1

π(1 + t2)
, and g(t) :=

1

π

1− 2t2

4 + 5t2 + t4
, t ∈ R.

The Fourier transforms of f, g are given by

f̂(ξ) = exp(−|ξ|) and ĝ(ξ) = exp(−|ξ|)− 3

2
exp(−2|ξ|), ξ ∈ R.

It can be verified directly that equations (5.4) and (5.5) are satisfied. Therefore, f, g given
above satisfy the Bedrosian identity (5.1) while have the property that supp f̂ = supp ĝ = R.

Surprisingly, the following necessity of the Bedrosian theorem was obtained in [38].

Theorem 5.4 If f, g ∈ L2(R) satisfy the Bedrosian identity (5.1), supp f̂ ⊆ [−a, b] for some
a, b ∈ R+ and endpoints −a, b are in supp f̂ then supp ĝ ⊆ R \ [−b, a].

The above theorem might be interpreted as that if f ∈ L2(R) is of low Fourier frequencies
then for the Bedrosian identity (5.1) to hold, it is necessary and sufficient that g has high
Fourier frequencies. Theorem 5.4 was first proved in [39] under the additional assumption that
f̂ ·χ[−a,b] is the restriction on [−a, b] of a nontrivial real-analytic function. Another necessity of
the Bedrosian theorem was observed in [33]. Specifically, it was shown there that a bounded
linear translation invariant operator on L2(Rd) satisfies the Bedrosian theorem if and only if
it is a linear combination of the identity operator and the partial Hilbert theorems. In the
one-dimensional case, it states that the Hilbert transform is essentially the only bounded linear
translation invariant operator on L2(R) that satisfies the Bedrosian theorem.

Finally, we mention some recent work on the Bedrosian identity for Lp functions [25, 31, 38].
The Bedrosian theorem for Lp functions was established in [25, 38]. The characterization in
Theorem 5.3 was extended to Lp functions in [38]. Reference [31] obtained another characteri-
zation in the time domain.

6 Conclusion

EMD and the classical Fourier analysis are two different methods for data analysis. There
is a large gap between them. EMD is very adaptive to the data under consideration but
it lacks mathematical justification. On the other hand, the classical Fourier analysis has a
rigorous mathematical foundation, but it is a linear process and is not adaptive to the data
under consideration. Recent mathematical developments on EMD focused on bridging the gap
between EMD and the classical Fourier analysis. There were two major directions. The first
direction was to modify the EMD so that it is less “empirical” and more “mathematical”. The
second direction was to modify the classical Fourier analysis so that it is more adaptive and
more nonlinear. Research results obtained so far in this area are interesting and insightful,
although there is much more ahead to be done.
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