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ABSTRACT

One of the most challenging tasks for which EMD could be useful
is that of non-parametric signal denoising, an area in whichwavelet
thresholding has been the dominant technique for many years. In this
paper, the major wavelet thresholding principle is used in the decom-
position modes resulting from applying EMD to a signal. We show,
that although a direct application of this principle in the EMD case
is not feasible, it can appropriately adapted by exploitingthe spe-
cial characteristics of the EMD decomposition modes. In thesame
manner, inspired by the translation invariant wavelet thresholding, a
similar technique adapted to EMD is developed leading to enhanced
denoising performance.

1. INTRODUCTION

The Empirical mode decomposition (EMD) method [1] is an algo-
rithm for the analysis of multicomponent signals [2] that works by
breaking the signal into a number of amplitude and frequencymod-
ulated (AM/FM) zero mean signals, termed intrinsic mode functions
(IMFs). In contrast to conventional decomposition methodssuch as
wavelets, which perform the analysis by projecting the signal un-
der consideration onto a number of predefined basis vectors,EMD
expresses the signal as an expansion of basis functions which are
signal-dependent, and are estimated via an iterative procedure called
sifting.

Although many attempts have been made to increase the under-
standing of the way EMD operates and to improve its performance
(see for example [3], [4], [5], [6], [7]), EMD still lacks a sound math-
ematical theory and is essentially described by an algorithm. How-
ever, partly due to the fact that it is easily and directly applicable and
partly because it often results in interesting and useful decomposi-
tion outcomes, it has found a vast number of diverse applications
such us biomedical [8], [9], watermarking [10] and audio processing
[11] to name a few.

Apart from the topic specific applications of EMD listed above,
a more generalized task in which EMD can be proved useful is signal
denoising. In this paper, inspired by standard wavelet thresholding
and translation invariant thresholding, EMD-based denoising tech-
niques are developed and tested in many different signal scenarios.
We show, that although the main principles shared by waveletand
EMD thresholding remain the same, in the case of EMD, the thresh-
olding operation has to be properly adapted in order to be consistent
with the special characteristics of the signal modes that result from
EMD.

This work was performed as part of the BIAS consortium under agrant
funded by the EPSRC under their Basic Technology Programme.

2. EMD: A BRIEF DESCRIPTION AND NOTATION

Empirical mode decomposition (EMD)[1] adaptively decomposes
a multicomponent signal [2]x(t) into L Intrinsic Mode Functions
(IMFs), h(i)(t), 1 ≤ i ≤ L,

x(t) =
L

∑

i=1

h
(i)(t) + d(t). (1)

whered(t) is a non zero-mean low order polynomial remainder.
Each one of the IMFs, say theith oneh(i)(t), is estimated with
the aid of an iterative process, called sifting, applied to the residual
multicomponent signal

x
(i)(t) =







x(t) , i = 1

x(t) − ∑i−1
j=1 h(j)(t) , i ≥ 2

(2)

The sifting process is effectively an empirical nevertheless pow-
erful technique for the estimation of the local meanm(i)(t) of the
residual multicomponent signalx(i)(t). Although the termlocal
meanis, especially for multicomponent signals, somewhat vague, in
the EMD context means that its substraction fromx(i)(t) will lead
to a signal, which is actually the corresponding IMF, i.e.h(i)(t) =

x(i)(t) − m(i)(t), that is going to have the following properties:

1. Zero mean.

2. All the maxima and all the minima ofh(i)(t) will correspond-
ingly be positive and negative.

3. h(i)(t) will be narrowband but not necessarily monocompo-
nent allowing the existance of both amplitude and frequency
modulation (AM/FM).

By construction, the number of, sayN(i), extrema ofh(i)(t) po-
sitioned in time instancesr(i) = [r

(i)
1 , r

(i)
2 , . . . , r

(i)

N(i)
] and the cor-

responding IMF pointsh(i)(r
(i)
j ), j = 1, . . . , N(i), will alternate

between maxima and minima, i.e., positive and negative values. As
a result, in any pair of extrema,r

(i)
j = [h(i)(r

(i)
j ), h(i)(r

(i)
j+1)], cor-

responds a single zero-crossingz
(i)
j . Depending on the IMF shape,

the number of zero-crossings can be eitherN(i) or N(i)−1. More-
over, each IMF, e.g. of orderi, have fewer extrema than all the lower
order IMFs,j = 1, . . . , i − 1, leading to fewer and fewer oscilla-
tions as the IMF order inceases. In other words, each IMF occupies
lower frequencies locally in the time-frequency domain than preced-
ing ones.

Fig. 1 depicts, as an example, the outcome of the application
of EMD to a well studied piecewise-regular signal [12] (Fig.1a)
corrupted by white Gaussian noise corresponding to a 5dB signal
to noise power ratio (SNR). EMD results in 11 IMFs shown in Fig.
1b-l.
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Fig. 1. Empirical mode decomposition of a noisy signal

3. SIGNAL DENOISING

Signal denoising can be described as follows:
Having sampled a noisy signalx(t) given byx(t) = x̄(t) +

σn(t), t = 1, 2, . . . , N where,x̄(t) is the noiseless signal andn(t)
are independent random variables Gaussian distributedN (0, 1), pro-
duce an estimatẽx(t) of signalx̄(t). Noise varianceσ can be known
or unknown and the denoising methods can be categorized as para-
metric or non-parametric depending on whether a predefined para-
metric model ofx̄(t) is adopted or not. In this paper, we are fo-
cussing on the non-parametric framework where the best known can-
didates are denoising techniques based on wavelet decomposition
[12], [13], [14]. Moreover, the novelty of this paper is the introduc-
tion of new non-parametric thresholding techniques applied to the
decomposition modes resulting from EMD instead of the wavelet
components. As will be seen, thresholding in EMD, is not a straight-
forward application of the concepts used in wavelet thresholding.

3.1. Wavelet based denoising

Employing a chosen orthonormal wavelet basis, an orthogonal N ×
N matrix W is appropriately built [15] which in turn leads to the
discrete wavelet transform (DWT)

c = W x

where,x = [x(1), x(2), . . . , x(N)] andc = [c1, c2, . . . , cN ]
contains the resultant wavelet coefficients. Due to the orthogonality
of matrixW , any wavelet coefficientci follows normal distribution
with varianceσ and mean the corresponding coefficient valuec̄i of
the DWT of the noiseless signalx̄(t). Provided that the signal under
consideration is sparse in the wavelet domain, which is actually the
case with the most of the signals we are interested in, then the DWT
is expected to distribute the total energy ofx̄(t) in only a few wavelet
components lending themselves to high amplitudes. As a result, the
amplitude of the most of the wavelet components is attributed to
noise only. The fundamental reasoning of wavelet thresholding is
to set to zero all the components which are lower than a threshold
related to noise level, i.e.,T = σC, whereC is a constant, and

then reconstruct the denoised signalx̃(t) utilizing the high amplitude
components only. The hard thresholding operator is defined by

ρT (y) =

{

y, |y| > T
0, |y| ≤ T,

(3)

Consequently, the estimated denoised signal is given by

x̃ = W
T
c̃ (4)

where, c̃ = [ρT (c1), ρT (c2), . . . , ρT (cN)] and W
T denotes

transposition of matrixW . Apart from the standard wavelet thresh-
olding described above, a number of modifications are investigated
in our simulation results section including translation invariant thresh-
olding [12] and Bayesian-based wavelet thresholding [16],[13].

With respect to the threshold selection, the universal threshold
T = σ

√
2 ln N is a popular candidate. Such a threshold guaran-

tees with high probability that all the components attributed to noise
will have lower amplitudes. In this paper, multiples of the above
threshold are used and the noise variance is estimated usinga robust
estimator based on the median of the components [12]. Moreover, it
is usually beneficial to apply thresholding after a primary resolution
level leaving the coarse scales corresponding to low frequencies un-
thresholded. This parameter will be taken into account in our study.

Fig. 2a,b shows the noise-free estimates of the corrupted by
noise signal of Fig. 1 using wavelet hard thresholding with the
universal threshold and Bayesian-based wavelet thresholding. The
numbers on the top left of the figures indicates the SNRs afterthe
denoising procedure. Note that this performance corresponds to a
single arbitrary noise realization.

3.2. Conventional EMD denoising

The initial attempt at using EMD as a denoising tool emerged from
the need to know whether a specific IMF contains useful informa-
tion or primarily noise. Thus, significance IMF test procedures were
simultaneously developed both by Flandrin et. al. [17], [18] and
Wu et. al. [19], [20] based on the statistical analysis of modes re-
sulted from the decomposition of signals consisting solelyof frac-
tional Gaussian noise and white Gaussian noise respectively. The
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Fig. 2. Examples of Wavelet-based denoising. The top-left numbers
are the SNR values after denoising.

reasoning underlying the above significance test procedureis fairly
simple but strong. If one knows the energy of the IMFs resulting
from the decomposition of a noise-only signal with certain charac-
teristics, then in actual cases of signals comprising both informa-
tion and noise with the specific characteristics, a significant discrep-
ancy between the energy of a noise-only IMF and the corresponding
noisy-signal IMF indicates the presence of useful information. In a
denoising scenario this translates to partially reconstructing the sig-
nal using only the IMFs which contain useful information anddis-
carding the IMFs that carry primarily noise, i.e., the IMFs that share
similar amounts of energy with the corresponding noise-only case.

In practice the noise-only signal is never available in order to
apply EMD and estimate the IMF energies, so the usefulness ofthe
above technique relies on whether or not the energies of the noise-
only IMFs can be estimated directly based on the actual noisy-signal.
The latter is usually the case due to a striking feature of EMD. Apart
from the first noise-only IMF, the power spectra of the other IMFs
exhibit self similar characteristics similar to those which appear in
any dyadic filter structure. As a result, the IMF energies,Ek should
linearly decrease in a semi-log diagram of, e.g.,log2 Ek with respect
to k. It also turns out that the first IMF carries the higher amounts
of energy. In this paper we will focus in signals with white Gaus-
sian noise. Then, the noise-only IMF energies can be approximated
according to the equation [18]:

Êk =
σ̂2

n

0.719
2.01−k

, k = 2, 3, 4, . . . (5)

where,σ̂2
n is the noise variance which can be approximated with the

variance of the first IMF.
Fig. 3 deals with the conventional denoising of the test signal of

Fig. 1a. On top, with solid line we see the semilog diagram (ener-
gies with respect to IMF number) of the corresponding IMFs (Fig.
1b-l) and the dashed line shows the results of the noise only model
of (5). We observe that after the fifth IMF the energies significantly
diverge from the theoretical model indicating the presenceof signif-
icant amounts on no-noise signal. The partial signal reconstruction
including only IMF number 6 to 11 results in the denoised signal
shown in Fig. 3.

4. IMF THRESHOLDING-BASED DENOISING

An alternative EMD denoising is proposed in this paper inspired by
wavelet thresholding. Some preliminary results have already ap-

peared very recently in [21], [22], [23] where the wavelet thresh-
olding idea is directly applied to the EMD case. However, it will be
seen that EMD-thresholding can exceed the performance achieved
by wavelet thresholding only by adapting the thresholding function
to the special nature of IMFs.

EMD performs a subband like filtering resulting in essentially
uncorrelated IMFs. Although the equivalent filter-bank structure is
by no means pre-determined and fixed as in wavelet decomposition,
one can in principle perform thresholding in each IMF in order to
locally exclude low energy IMF parts which are expected to besig-
nificantly corrupted by noise. A direct application of wavelet thresh-
olding in the EMD case translates to:

h̃
(i)(t) =

{

h(i)(t), |h(i)(t)| > Ti

0, |h(i)(t)| ≤ Ti,
(6)

where, h̃(i)(t) indicates theith thresholded IMF. The reason for
adopting different thresholdsTi per modei will be discussed later
on.

A generalized reconstruction of the denoised signal is given by

x̃(t) =

M2
∑

k=M1

h̃
(i)(t) +

L
∑

k=M2+1

h
(i)(t) (7)

where, the introduction of the parametersM1 andM2 gives us flex-
ibility on the exclusion of the noisy low order IMFs and on theop-
tional thresholding of the high order ones which in white Gaussian
noise conditions contains low noise energy.

There are two major interconnected differences between wavelet
and direct EMD thresholding (EMD-DT) as described in (6). First,
in contrast to wavelet denoising where thresholding is applied to
the wavelet components, in the EMD case, thresholding is applied
to theN samples of each IMF which are basically the signal por-
tion contained in each adaptive subband. An equivalent procedure in
the wavelet method would be to perform thresholding on the recon-
structed signals after performing the synthesis function on each scale
separately. Secondly, as a consequence of the first difference, the
IMF samples are not Gaussian distributed with variance equal to the
noise variance as the wavelet components are irrespective of scale.
In fact, the noise contained in each IMF is colored1 having different
energyin each mode. In that sense, EMD denoising is mostly related
to wavelet denoising of signals corrupted by color noise where the
thresholds have to be scale dependent [24]. In our study as thresh-
olds we are going to use multiples of the IMF dependent universal
threshold, i.e.,Tk = c

√
Ek2 ln N , wherec is constant. Moreover,

the noise only IMF energies,Ek can be computed directly based on
the variance estimate of the first IMF using (5).

4.1. Thresholding adapted to EMD characteristics

The direct application of wavelet like thresholding to the decompo-
sition modes is in principle wrong and can have catastrophicconse-
quences to the continuity of the reconstructed signal. Thisarises
as a result of the special attributes that IMFs have, namely,they
resemble an AM/FM modulated sinusoid with zero mean. As a
result, it is guaranteed that, even in a noiseless case, in any in-
terval z(i)

j = [z
(i)
j z

(i)
j+1], the absolute amplitude of theith IMF,

i = 1, 2, . . . , N , will drop below any non-zero threshold in the
proximity of the zero-crossingsz(i)

j andz
(i)
j+1. In other words, based

1There is strong evidence that at least in the noise-only casethe distribu-
tion of the IMF samples is still Gaussian [20].
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Fig. 3. (a) Theoretical noise-only model and actual IMF energies
with respect to IMF number. (b) The resulted denoised signalwhen,
for the reconstruction, the IMFs number 6 to number 11 are used
only.

on the absolute amplitude of isolated IMF samples is impossible to
infer for any one of them if they correspond to noise or to useful
signal. However, we are able to guess on whether the intervalz

(i)
j

is noise-dominant or signal-dominant based on the single extrema
h(i)(r

(i)
j ) that corresponds to this interval. If the signal is absent,

the absolute value of this extrema is going to lie below the threshold.
Alternatively, in the presence of strong signal, the extrema value is
expected to exceed the threshold. Moreover, since in each IMF the
noise and the signal share the same bandwidth, the signal dominance
at the extrema time instance is highly likely to be extended to all the
IMF samples belonging to the specific zerocrossing interval. As a re-
sult the newly developed EMD hard thresholding, hereafter referred
to as EMD interval thresholding (EMD-IT) which translates to:

h̃
(i)(z

(i)
j ) =

{

h(i)(z
(i)
j ), |h(i)(r

(i)
j )| > Ti

0, |h(i)(r
(i)
j )| ≤ Ti,

(8)

for j = 1, 2, . . . , N
(i)
z , where,h(i)(z

(i)
j ) indicates the samples from

instantz(i)
j to z

(i)
j+1 of theith IMF andN

(i)
z equals to eitherN(i) or

N(i) − 1 depending on theith IMF shape.
After careful consideration, it can be seen that the above proce-

dure resembles wavelet thresholding more than direct EMD tresh-
olding, because wavelet thresholding is applied to the wavelet coef-
ficients. In fact, each coefficient is responsible for the values of a
sequence of samples of the subsignal corresponding to the specific
scale reconstruction which increases with scale and it is determined
by the wavelet size of support. Similarly, the number of IMF sam-
ples which are altered or not in the EMD-IT depends on the IMF
order and is increasing as the order increases.

Fig. 4a-b depicts the differences between the direct and thein-
terval EMD thresholding. As an example, the sixth IMF of Fig.1
has been used. The thick light colored line corresponds to the ac-
tual IMF and the solid and dotted line is associated with interval
thresholding, and direct thresholding respectively. A detail of the
thresholding function applied on the IMF segment shown between
the two vertical dashed lines in Fig. 4a is also depicted in Fig. 4b1-
b3. The horizontal lines indicates the plus and minus of the universal
threshold. More specifically, in Fig. 4b2 and b3 we see the parts of
the IMF segment which are not zero after thresholding. The discon-
tinuities that EMD-DT introduces are apparent. EMD-IT reduces

Fig. 4. Differences between Direct and Interval thresholding andthe
corresponding denoised signals.

significantly such an effect. Fig. 5a and b show the denoisingeffect
when the two different thresholding methods are used. We observe
that for the same noise realization EMD-IT resulted in lowerSNR
than EMD-DT. It should be noted here, that the universal threshold
is not the optimum one neither for EMD nor for wavelet thresholding
as will become apparent in the simulations section.

Fig. 5. Denoised signals after applying direct and interval threshold-
ing.

4.2. Iterative EMD interval-thresholding

Inspired by translation invariant wavelet thresholding, where a num-
ber of denoised versions of the signal under consideration are ob-
tained iteratively in order to enhance the tolerance against noise by
averaging them, we make an attempt to develop an EMD-based de-
noising technique which exploits a similar principle. Onceagain, the
direct application of translation invariant denoising to the EMD case
will not work. This arises from the fact that the wavelet components
of the circularly shifted versions of the signal correspondto atoms
centered on different signal instances. In the case of the data-driven
EMD decomposition, the major processing components, whichare
the extrema, are signal dependent leading to fixed relative extrema
positions with respect to the signal when the latter is shifted. As a
result, the EMD of shifted versions of the noisy signal corresponds
to identical IMFs sifted by the same amount. Consequently, noise
averaging can not be achieved in this way.
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The different denoised versions of the noisy signal in the case of
EMD can only be constructed from different IMF versions after be-
ing thresholded. Inevitably, this is possible only by decomposing dif-
ferent noisy versions of the signal under consideration itself. So the
problem at hand translates to the following question: In which way,
having a signal buried in noise, can you produce different noisy ver-
sions of the actual noise-free signal. The answer stems fromwithin
the EMD concept exploiting the characteristics of the first IMF. We
know that in white Gaussian noise conditions, the first IMF ismainly
noise. By circularly sifting by a random number of samples the first
IMF and then adding the resulted noise signal to the sum of therest
of the IMFs we obtain a different noisy-version of the original sig-
nal. In fact, in case that the first IMF consist of noise only, then the
total noise variance of the newly generated noisy-signal isthe same
to the original one.

The above EMD denoising technique, hereafter refered to as It-
erative EMD interval-thresholding (EMD-IIT) is summarized in the
following steps:

1. Perform an EMD expansion of the original noisy signalx.

2. Perform a partial reconstruction using the lastL − 1 IMFs
only, xp(t) =

∑L

i=2 h(i)(t).

3. Randomly circularly shift the sample positions of the first
IMF, h

(1)
a (t) = CIRCSHIFT(h(1)(t)).

4. Construct a different noisy version of the original signal, xa(t) =

xp(t) + h
(1)
a (t).

5. Perform EMD on the new altered noisy signalxa(t).

6. Perform the EMD-IT denoising (Eq. 8) to the IMFs ofxa(t)
to obtain a denoised versioñx1(t) of x.

7. Iterate between steps 3-6K−1 times, whereK is the number
of averaging iterations in order to obtaink denoised versions
of x, i.e.,x̃1, x̃2, . . . , x̃K .

8. Average the resulted denoised signalsx̃(t) = 1
K

∑K

k=1 x̃k(t)

5. SIMULATION RESULTS

Apart from the signal that was used in the previous section, the final
simulations will be also performed with the Doppler signalsshown
in Fig. 6. The two signal used are sampled with different sampling

Fig. 6. Differences between Direct and Interval thresholding andthe
corresponding denoised signals.

periods in order to consist of 1024, 2048 and 4096 samples. The
SNR values used are -2, 0 and 2 dB. The SNR values after the ap-
plication of the denoising techniques discussed in this paper which
corresponds to the ensemble average of 50 independent realizations
per simulation setting, are shown in tables 1 and 2 for the piecewise-
regular and Doppler signal respectively. The SNR values shown,
corresponds to optimized values such as the primary resolution level
for the wavelet based denoising techniques and parametersM1, M2

of equation (7) for the EMD based denoising. Moreover, the adopted
wavelet filter is the symmlet of order 8 and in the case of EMD-IIT
20 iterations are used. Finally, for the methods that thresholding

is applied, the best among 11 thresholds was adopted for eachone
of the different SNR/sampling frequency simulation setup.The 11
thresholds were calculated by multiplication of the universal thresh-
old with the constants 0.4 up to 1.4 with steps of 0.1; It turned out
that in both simulation examples and all the different simulation se-
tups, the best threshold for EMD-IIT was between 0.5 to 0.7 times
the universal threshold having small performance differences for any
threshold between the above values. The picture is similar in the case
of translation invariant thresholding with the differencethat the opti-
mum threshold values were between 0.7 and 0.9 times the universal
threshold. We observe, that in almost all the cases EMD-IIT outper-
forms the rest of the methods. Moreover, the improvement increases
with the increase of the sampling frequency.

6. CONCLUSIONS

In this paper, the basic wavelet thresholding operator was modified in
order to suit to the special characteristics of EMD modes. Moreover,
inspired by translation invariant wavelet thresholding, an iterative
scheme for improved EMD denoising performance was developed.
The new algorithms, have been tested with two well studied signals
in high noise scenarios and their performance was compared with
wavelet thresholding methods. It turned out, that the iterative EMD
denoising method exhibit the best performance in most cases.
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