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ABSTRACT

One of the most challenging tasks for which EMD could be usefu
is that of non-parametric signal denoising, an area in whiabelet
thresholding has been the dominant technique for many ykeitsis
paper, the major wavelet thresholding principle is usetiérdecom-
position modes resulting from applying EMD to a signal. Wewh
that although a direct application of this principle in th®lE case
is not feasible, it can appropriately adapted by exploiting spe-
cial characteristics of the EMD decomposition modes. Inséme
manner, inspired by the translation invariant waveletshodding, a
similar technique adapted to EMD is developed leading t@erobd
denoising performance.

1. INTRODUCTION

The Empirical mode decomposition (EMD) method [1] is an algo
rithm for the analysis of multicomponent signals [2] thatrisby
breaking the signal into a number of amplitude and frequenacg-
ulated (AM/FM) zero mean signals, termed intrinsic modecfioms
(IMFs). In contrast to conventional decomposition methsaish as
wavelets, which perform the analysis by projecting the a@igm-
der consideration onto a number of predefined basis vedEM®)
expresses the signal as an expansion of basis functions vainéc
signal-dependent, and are estimated via an iterative guveecalled
sifting.

2. EMD: A BRIEF DESCRIPTION AND NOTATION

Empirical mode decomposition (EMD)[1] adaptively decorsg®
a multicomponent signal [2}(¢) into L Intrinsic Mode Functions
(IMFs), R (t), 1 < i < L,

L
a(t)=> A (t) +d(t). 1)

i=1
where d(t) is a non zero-mean low order polynomial remainder.
Each one of the IMFs, say th¢h oneh(")(t), is estimated with
the aid of an iterative process, called sifting, applied® tesidual
multicomponent signal

{ a(t)

w(t) = 252 h9 (1)
The sifting process is effectively an empirical nevertbslpow-
erful technique for the estimation of the local mear?) (t) of the
residual multicomponent signai(i)(t). Although the termlocal
meanis, especially for multicomponent signals, somewhat vague
the EMD context means that its substraction froff (¢) will lead
to a signal, which is actually the corresponding IMF, i) ()
@ (t) —m 9 (¢), that is going to have the following properties:
1. Zero mean.

2. Allthe maxima and all the minima &* (¢) will correspond-
ingly be positive and negative.

,i=1
0 )
1> 2

Although many attempts have been made to increase the under-
standing of the way EMD operates and to improve its perfogaan
(see for example [3], [4], [5], [6], [7]), EMD still lacks a sad math-

3. ¥ (¢) will be narrowband but not necessarily monocompo-
nent allowing the existance of both amplitude and frequency

ematical theory and is essentially described by an algaoritHow-

ever, partly due to the fact that it is easily and directlylaable and
partly because it often results in interesting and usefabo®osi-
tion outcomes, it has found a vast number of diverse apmicat
such us biomedical [8], [9], watermarking [10] and audiogassing
[11] to name a few.

Apart from the topic specific applications of EMD listed abpv
amore generalized task in which EMD can be proved usefuljisasi
denoising. In this paper, inspired by standard waveletstiokling
and translation invariant thresholding, EMD-based déngitech-
nigues are developed and tested in many different signabsices.
We show, that although the main principles shared by wawidt
EMD thresholding remain the same, in the case of EMD, thestiire
olding operation has to be properly adapted in order to beistent
with the special characteristics of the signal modes thailtérom
EMD.

This work was performed as part of the BIAS consortium undgraat
funded by the EPSRC under their Basic Technology Programme.
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modulation (AM/FM).
By construction, the number of, say(i), extrema of(*) (¢) po-

sitioned in time instances™ = [r{”, {", ..., r{(} ] and the cor-

responding IMF point&” ("), j =1, ..., N(i), will alternate
between maxima and minima, i.e., positive and negativeegalids
aresult, in any pair of extrema,”’ = [ (+{"), L (r{) )], cor-
responds a single zero-cross'w_nﬁ). Depending on the IMF shape,
the number of zero-crossings can be eitiVgi) or N (i) — 1. More-
over, each IMF, e.g. of ordér have fewer extrema than all the lower
order IMFs,j = 1,..., i — 1, leading to fewer and fewer oscilla-
tions as the IMF order inceases. In other words, each IMFmesu
lower frequencies locally in the time-frequency domaimtpeeced-
ing ones.

Fig. 1 depicts, as an example, the outcome of the application
of EMD to a well studied piecewise-regular signal [12] (Fitja)
corrupted by white Gaussian noise corresponding to a 5diBakig
to noise power ratio (SNR). EMD results in 11 IMFs shown in.Fig
1b-l.
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Fig. 1. Empirical mode decomposition of a noisy signal

3. SIGNAL DENOISING

Signal denoising can be described as follows:

Having sampled a noisy signalt) given by z(t) = z(t) +
on(t), t =1, 2,..., N whereZ(t) is the noiseless signal andt)
are independent random variables Gaussian distrib\igx 1), pro-
duce an estimat@(t) of signalz(¢). Noise variance can be known

or unknown and the denoising methods can be categorizedas pa

metric or non-parametric depending on whether a predefiaea p
metric model ofz(t) is adopted or not. In this paper, we are fo-
cussing on the non-parametric framework where the best kican-
didates are denoising techniques based on wavelet deciiopos
[12], [13], [14]. Moreover, the novelty of this paper is therbduc-
tion of new non-parametric thresholding techniques appitethe
decomposition modes resulting from EMD instead of the wetvel
components. As will be seen, thresholding in EMD, is not aight-
forward application of the concepts used in wavelet thrieshg.

3.1. Wavelet based denoising

Employing a chosen orthonormal wavelet basis, an orthdgna
N matrix W is appropriately built [15] which in turn leads to the
discrete wavelet transform (DWT)

c=Wzx

where,z = [z(1), z(2),..., z(N)] andec = [c1, c2,..., cN]
contains the resultant wavelet coefficients. Due to theogdhality
of matrix W, any wavelet coefficient; follows normal distribution
with variances and mean the corresponding coefficient vaipef
the DWT of the noiseless signal(t). Provided that the signal under
consideration is sparse in the wavelet domain, which isadlgtthe
case with the most of the signals we are interested in, theeDWT

is expected to distribute the total energyzdf) in only a few wavelet
components lending themselves to high amplitudes. As dtyésel
amplitude of the most of the wavelet components is attribbute
noise only. The fundamental reasoning of wavelet threshglds
to set to zero all the components which are lower than a tbtésh
related to noise level, i.el’ = oC, whereC is a constant, and
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then reconstruct the denoised sigh@l) utilizing the high amplitude
components only. The hard thresholding operator is defiged b

e ={ & 2T ®
Consequently, the estimated denoised signal is given by
z=wTe (4)
where,é = [pr(c1), pr(c2), ..., pr(cn)] and WT denotes

transposition of matris¥ . Apart from the standard wavelet thresh-
olding described above, a humber of modifications are ifyatsd

in our simulation results section including translatioveinant thresh-
olding [12] and Bayesian-based wavelet thresholding [[g].

With respect to the threshold selection, the universalstiwkl
T = ov/2In N is a popular candidate. Such a threshold guaran-
tees with high probability that all the components attréolito noise
will have lower amplitudes. In this paper, multiples of thzoae
threshold are used and the noise variance is estimated aisotmist
estimator based on the median of the components [12]. Mereitv
is usually beneficial to apply thresholding after a primayalution
level leaving the coarse scales corresponding to low frecjee un-
thresholded. This parameter will be taken into account instudy.

Fig. 2a,b shows the noise-free estimates of the corrupted by
noise signal of Fig. 1 using wavelet hard thresholding with t
universal threshold and Bayesian-based wavelet threisigold he
numbers on the top left of the figures indicates the SNRs #fter
denoising procedure. Note that this performance correfptm a
single arbitrary noise realization.

3.2. Conventional EMD denoising

The initial attempt at using EMD as a denoising tool emergethf
the need to know whether a specific IMF contains useful inferm
tion or primarily noise. Thus, significance IMF test procediuwere
simultaneously developed both by Flandrin et. al. [17],][48d
Wu et. al. [19], [20] based on the statistical analysis of este-
sulted from the decomposition of signals consisting sotélfrac-
tional Gaussian noise and white Gaussian noise respsctiféie
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Fig. 2. Examples of Wavelet-based denoising. The top-left number

are the SNR values after denoising.

reasoning underlying the above significance test procediuearly
simple but strong. If one knows the energy of the IMFs resglti
from the decomposition of a noise-only signal with certdiarac-
teristics, then in actual cases of signals comprising bofbrina-
tion and noise with the specific characteristics, a sigmificéscrep-
ancy between the energy of a noise-only IMF and the correpgn
noisy-signal IMF indicates the presence of useful infoioratin a
denoising scenario this translates to partially recowstrg the sig-
nal using only the IMFs which contain useful information atis-
carding the IMFs that carry primarily noise, i.e., the IMRattshare
similar amounts of energy with the corresponding noise-oake.

In practice the noise-only signal is never available in orde
apply EMD and estimate the IMF energies, so the usefulnetizeof
above technique relies on whether or not the energies ofdlsen
only IMFs can be estimated directly based on the actual reiggyal.
The latter is usually the case due to a striking feature of EXlart
from the first noise-only IMF, the power spectra of the othdF$
exhibit self similar characteristics similar to those whappear in
any dyadic filter structure. As a result, the IMF energigs,should
linearly decrease in a semi-log diagram of, dag, £, with respect
to k. It also turns out that the first IMF carries the higher ameunt
of energy. In this paper we will focus in signals with white Ga
sian noise. Then, the noise-only IMF energies can be appairid
according to the equation [18]:

on

~ 0719

% 2017 % k=23, 4,...

©)

where,52 is the noise variance which can be approximated with th
variance of the first IMF.

Fig. 3 deals with the conventional denoising of the testaligh
Fig. la. On top, with solid line we see the semilog diagraneien
gies with respect to IMF number) of the corresponding IMFsg.(F
1b-l) and the dashed line shows the results of the noise onljein
of (5). We observe that after the fifth IMF the energies sigaifily
diverge from the theoretical model indicating the preseasfcggnif-
icant amounts on no-noise signal. The partial signal recoctson
including only IMF number 6 to 11 results in the denoised algn
shown in Fig. 3.

4. IMF THRESHOLDING-BASED DENOISING

An alternative EMD denoising is proposed in this paper irespby
wavelet thresholding. Some preliminary results have direap-
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peared very recently in [21], [22], [23] where the wavelatth-
olding idea is directly applied to the EMD case. However,iit e
seen that EMD-thresholding can exceed the performance\athi
by wavelet thresholding only by adapting the thresholdimgcfion
to the special nature of IMFs.

EMD performs a subband like filtering resulting in essehtial
uncorrelated IMFs. Although the equivalent filter-banlusture is
by no means pre-determined and fixed as in wavelet decorigosit
one can in principle perform thresholding in each IMF in ortie
locally exclude low energy IMF parts which are expected taige
nificantly corrupted by noise. A direct application of waetghresh-
olding in the EMD case translates to:

(1) = {

where, 1V (t) indicates theith thresholded IMF. The reason for
adopting different thresholds; per modei will be discussed later
on.

A generalized reconstruction of the denoised signal isrgbse

RO (1),
0,

IO ()] > T,

IR ()] < T, ©)

Mo L
)= BP0+ > V) @)
k=M, k=Ms+1

where, the introduction of the parametdi§s and M- gives us flex-
ibility on the exclusion of the noisy low order IMFs and on e
tional thresholding of the high order ones which in white &aan
noise conditions contains low noise energy.

There are two major interconnected differences betweegletv
and direct EMD thresholding (EMD-DT) as described in (6)sEi
in contrast to wavelet denoising where thresholding is iegplo
the wavelet components, in the EMD case, thresholding ifeapp
to the N samples of each IMF which are basically the signal por-
tion contained in each adaptive subband. An equivalentgghae in
the wavelet method would be to perform thresholding on thene
structed signals after performing the synthesis functioeach scale
separately. Secondly, as a consequence of the first differehe
IMF samples are not Gaussian distributed with variancelgqubhe
noise variance as the wavelet components are irrespedtacate.
In fact, the noise contained in each IMF is coldréaving different
energyin each mode. In that sense, EMD denoising is mostly related
to wavelet denoising of signals corrupted by color noise reftbe
thresholds have to be scale dependent [24]. In our studyrastth
olds we are going to use multiples of the IMF dependent usaler
threshold, i.e.Tx = ¢vE;x21In N, wherec is constant. Moreover,
the noise only IMF energiedy, can be computed directly based on

&he variance estimate of the first IMF using (5).

4.1. Thresholding adapted to EMD characteristics

The direct application of wavelet like thresholding to trezdmpo-
sition modes is in principle wrong and can have catastrophinse-
guences to the continuity of the reconstructed signal. ahises

as a result of the special attributes that IMFs have, nantlegy
resemble an AM/FM modulated sinusoid with zero mean. As a
result, it is guaranteed that, even in a noiseless case,\iriman
terval z;” = [zj(z) z§21], the absolute amplitude of thi¢h IMF,

1 =1, 2,..., N, will drop below any non-zero threshold in the
proximity of the zero-crossing%” andzj(fﬁl. In other words, based

1There is strong evidence that at least in the noise-only thasdistribu-
tion of the IMF samples is still Gaussian [20].
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Fig. 3. (a) Theoretical noise-only model and actual IMF energiesig. 4. Differences between Direct and Interval thresholding ttued
with respect to IMF number. (b) The resulted denoised sighain, ~ corresponding denoised signals.
for the reconstruction, the IMFs number 6 to number 11 arel use
only.
significantly such an effect. Fig. 5a and b show the denoisffegt
when the two different thresholding methods are used. Werabs
on the absolute amplitude of isolated IMF samples is imfs$d  that for the same noise realization EMD-IT resulted in IoB&R
infer for any one of them if they correspond to noise or to usef than EMD-DT. It should be noted here, that the universalsthoéd

signal. However, we are able to guess on whether the inteé&"/él
is noise-dominant or sighal-dominant based on the singiema

h(® (r{?) that corresponds to this interval. If the signal is absent,

the absolute value of this extrema is going to lie below theghold.
Alternatively, in the presence of strong signal, the exaerlue is
expected to exceed the threshold. Moreover, since in eaéhthig
noise and the signal share the same bandwidth, the signahdooce
at the extrema time instance is highly likely to be extendealltthe
IMF samples belonging to the specific zerocrossing inteiala re-
sult the newly developed EMD hard thresholding, hereattarred
to as EMD interval thresholding (EMD-IT) which translates t
poey = { MOED, WOE>T g
i 0, IO ()] < T,

forj =1, 2,..., N, where ,” (") indicates the samples from

instantzj(l) to zj(fﬁl of theith IMF and V" equals to eithelV (i) or
N (i) — 1 depending on thé&h IMF shape.

After careful consideration, it can be seen that the aboweepr
dure resembles wavelet thresholding more than direct ENBhtr
olding, because wavelet thresholding is applied to the lgaveef-
ficients. In fact, each coefficient is responsible for theigal of a
sequence of samples of the subsignal corresponding to duifisp
scale reconstruction which increases with scale and ittexraened
by the wavelet size of support. Similarly, the number of IM#fs

is not the optimum one neither for EMD nor for wavelet thredirg
as will become apparent in the simulations section.

40[15.0858, R ]
20f )
ok
20k

(a)
EMD denoising with Interval Thresholding

0 1000 2000 3000 4000
(b)

Fig. 5. Denoised signals after applying direct and interval thotd-

ing.

4.2. Iterative EMD interval-thresholding

Inspired by translation invariant wavelet thresholdingene a num-
ber of denoised versions of the signal under consideratierob-

ples which are altered or not in the EMD-IT depends on the IMFtained iteratively in order to enhance the tolerance agaioise by

order and is increasing as the order increases.

Fig. 4a-b depicts the differences between the direct anéhthe
terval EMD thresholding. As an example, the sixth IMF of Fi.
has been used. The thick light colored line correspondsdath
tual IMF and the solid and dotted line is associated withrirze
thresholding, and direct thresholding respectively. Aadeif the
thresholding function applied on the IMF segment shown betw
the two vertical dashed lines in Fig. 4a is also depicted ¢n Bb1-
b3. The horizontal lines indicates the plus and minus of tiieausal
threshold. More specifically, in Fig. 4b2 and b3 we see théspar
the IMF segment which are not zero after thresholding. Theati-
tinuities that EMD-DT introduces are apparent. EMD-IT reelsi
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averaging them, we make an attempt to develop an EMD-based de

noising technique which exploits a similar principle. Oaggin, the
direct application of translation invariant denoisinghe EMD case
will not work. This arises from the fact that the wavelet caments

of the circularly shifted versions of the signal correspomcitoms
centered on different signal instances. In the case of tteedtazen

EMD decomposition, the major processing components, waieh
the extrema, are signal dependent leading to fixed relattreraa

positions with respect to the signal when the latter is stliftAs a
result, the EMD of shifted versions of the noisy signal cepends
to identical IMFs sifted by the same amount. Consequentisen
averaging can not be achieved in this way.



The different denoised versions of the noisy signal in theead
EMD can only be constructed from different IMF versions afie-
ing thresholded. Inevitably, this is possible only by deposing dif-
ferent noisy versions of the signal under consideraticgifitSo the
problem at hand translates to the following question: Inclhiay,
having a signal buried in noise, can you produce differeigyneer-
sions of the actual noise-free signal. The answer stems vithin
the EMD concept exploiting the characteristics of the fikéEl We
know that in white Gaussian noise conditions, the first IMfk&nly
noise. By circularly sifting by a random number of samplesfilst
IMF and then adding the resulted noise signal to the sum ofetste
of the IMFs we obtain a different noisy-version of the orisig-
nal. In fact, in case that the first IMF consist of noise orthgrt the
total noise variance of the newly generated noisy-signélésame
to the original one.

The above EMD denoising technique, hereafter refered to as |

erative EMD interval-thresholding (EMD-IIT) is summarizén the
following steps:

1. Perform an EMD expansion of the original noisy signal
2. Perform a partial reconstruction using the last 1 IMFs
only, z,(t) = S5, R (¢).

3. Randomly circularly shift the sample positions of thetfirs
IMF, V() = CIRCSHIFTIA™ (¢)).

. Construct a different noisy version of the original signa (¢t) =
p(t) + h$)(2).

5. Perform EMD on the new altered noisy sigmalt).

6. Perform the EMD-IT denoising (Eq. 8) to the IMFs®f(t)
to obtain a denoised versian (¢) of x.

7. Iterate between steps 36— 1 times, where is the number
of averaging iterations in order to obtdirdenoised versions
of x,i.e.,z1, T2,...,7

, LK.

8. Average the resulted denoised sigrgls = fo:l Zr(t)

5. SSIMULATION RESULTS

Apart from the signal that was used in the previous sectlmnfihal
simulations will be also performed with the Doppler signsti®wn
in Fig. 6. The two signal used are sampled with different damgp

0.5

0

-0.5

Fig. 6. Differences between Direct and Interval thresholding ted
corresponding denoised signals.

periods in order to consist of 1024, 2048 and 4096 sampleg Th
SNR values used are -2, 0 and 2 dB. The SNR values after the ap-

plication of the denoising techniques discussed in thigpapich
corresponds to the ensemble average of 50 independertatéaiis
per simulation setting, are shown in tables 1 and 2 for thegpigse-
regular and Doppler signal respectively. The SNR valuesveho
corresponds to optimized values such as the primary résoligvel
for the wavelet based denoising techniques and parameterd/,
of equation (7) for the EMD based denoising. Moreover, thapéetl
wavelet filter is the symmlet of order 8 and in the case of ENID-I
20 iterations are used. Finally, for the methods that tholetsing
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is applied, the best among 11 thresholds was adopted forarach
of the different SNR/sampling frequency simulation setlipe 11
thresholds were calculated by multiplication of the undatithresh-
old with the constants 0.4 up to 1.4 with steps of 0.1; It tdroet
that in both simulation examples and all the different satioh se-
tups, the best threshold for EMD-IIT was between 0.5 to Origs
the universal threshold having small performance diffeesrfor any
threshold between the above values. The picture is similduei case
of translation invariant thresholding with the differertbat the opti-
mum threshold values were between 0.7 and 0.9 times theraalve
threshold. We observe, that in almost all the cases EMD-lifper-
forms the rest of the methods. Moreover, the improvememeages
with the increase of the sampling frequency.

6. CONCLUSIONS

In this paper, the basic wavelet thresholding operator wadified in
order to suit to the special characteristics of EMD modestddweer,
inspired by translation invariant wavelet thresholding, iterative
scheme for improved EMD denoising performance was devdlope
The new algorithms, have been tested with two well studigdas

in high noise scenarios and their performance was compaitid w
wavelet thresholding methods. It turned out, that the fikegEMD
denoising method exhibit the best performance in most cases
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