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ABSTRACT

Degrading the quality and intelligibility of the speech signals, background noise is a severe
problem in communication and other speech related systems. In order to get rid of this problem,
it is important to enhance the original speech signal mainly through noise reduction. Speech
enhancement is the term used to describe such algorithms and devices whose purpose is to
improve some perceptual aspects of the speech for the human listener or to improve the speech
signal so that it may be better exploited by other speech processing algorithms. Development and
widespread deployment of digital communication systems during the last twenty years have
brought increased attention to the role of speech enhancement in speech processing problems.
For this purpose, this thesis presents novel speech enhancement methods based on applying some

thresholding strategies in Empirical Mode Decomposition (EMD) domain.

Since speech signals are nonlinear and non-stationary in nature, the performance of related
studies is significantly dependent on the analysis method. Although Fourier transform and
wavelet analysis made great contributions, they suffer from many shortcomings in the case of
nonlinear and non-stationary signals. The EMD, recently been pioneered by Huang et. al. as a
new and powerful data analysis method for nonlinear and non-stationary signals has made a
novel and effective path for speech enhancement studies. Basically, EMD is a data-adaptive
decomposition method with which any complicated data set can be decomposed into zero mean
oscillating components, named intrinsic mode functions (IMFs). Such functions give sharp and
meaningful identifications of instantaneous frequencies. Recent studies have shown that with
EMD, it is possible to successfully identify the noise components from the IMFs of the noisy
speech. For instance, in case of white noise, most of the noise components of a noisy speech

signal are centered on the first three IMFs due to their frequency characteristics.

Thresholding is a widely used process in noise reduction algorithms. The idea is to determine a
threshold value and to apply different subtraction algorithms for the segmented regions.
However, it is never easy to identify and remove the noise components while keeping the
original speech components non-degraded. That is why; one of the major drawbacks of these
kinds of processes is the degradation of the speech signal, especially in the process of noisy
signals with high signal-to-noise ratios (SNR). In order to minimize the degradation of the

original speech components, a modified soft-thresholding strategy that works on a frame basis is



adapted in this study. The IMFs of the noisy speech signal are denoised by applying the modified
soft-thresholding strategy on the coefficients of each IMF. With the proposed strategy, most of
the noise components are successfully removed while the speech components are mainly kept.

This strategy enables even signals with high SNRs to be processed effectively.

It is never possible to remove all the noise components in a noise reduction method. The
remaining noise parts may result in an irritating sound which is referred as the musical noise.
That is why; most speech enhancement algorithms not only introduce speech distortion but also
suffer from the musical noise artifact. The proposed EMD based algorithm is highly effective in
noise removal and introduces a rather discrete noise than a continuous musical sound. In order to
obtain even better results for speech quality and quantity, the method was further improved by
introducing a Discrete Cosine Transform (DCT) based thresholding as a first stage. The two-
stage algorithm gives efficient results, successfully improving the SNR of the noisy speech and
removing most of the noise components. The thesis work mainly concentrates on white noise;
however the method has been further improved with a sub-band approach so that it may be
applied to different noise types.
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Chapter 1

Introduction

1.1. General Introduction

In many speech related systems, the desired signal is not available directly; rather it is mostly
contaminated with some interference sources. These background noise signals degrade the
quality and intelligibility of the original speech, resulting in a severe drop in the performance of
the applications. There are different types of noise signals which affect the quality of the original
speech. It may be a wide-band noise in the form of a white or colored noise, a periodic signal
such as in hum noise, room reverberations, or it can take the form of fading noise. It is also
possible that the speech signal may be simultaneously attacked by more than one noise source.
The most common type of noise in time series analysis and signal processing is the white noise.
That is why; this thesis is mainly concerned in this kind of noise. Pink and high frequency
channel noise are also used in order to show the robustness of the proposed algorithms.

The degradation of the speech signal due to the background noise is a severe problem in speech
related systems and therefore should be eliminated through speech enhancement algorithms.
Speech enhancement aims at improving the perceptual quality and intelligibility of a speech
signal in noisy environments, mainly through noise reduction algorithms. Such types of
processes may be applied to a mobile radio communication system, a speech recognition system,
a set of low quality recordings, or to improve the performance of aids for the hearing impaired.
Figure 1.1 shows an illustration of the usage of speech enhancement. It can be observed that
enhancement may also be applied directly to the clean speech signal in order to reduce the effect

of the channel noise in communication systems.
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Figure 1.1: The application areas of speech enhancement.

Due to its significant importance in today’s information technology, the topic is widely
researched. The performance of such systems is mainly evaluated according to the quality and
intelligibility. The quality of the enhanced signals refers to its clarity, distorted nature and the
level of the residual noise in that signal. Most speech enhancement methods improve the quality
of the signal however degrades its intelligibility, which refers to the understandability of the
enhanced speech; the percentage of words that could be correctly identified by the listener.
Human listeners can usually extract more information from the noisy signal than from the
enhanced signal by careful listening.

Since quality and intelligibility require live listening sessions, they are both time consuming and
expensive to measure. That is why; researchers mostly use some mathematical measures which
are believed to be correlated with the quality and intelligibility of the enhanced speech. For this
purpose, signal-to-noise ratio (SNR) and perceptual evaluation of speech quality (PESQ) tests
are widely used to show the performance of the proposed algorithms in terms of their quality.
For assessing the intelligibility of the enhanced signal, automatic speech recognition tests are

commonly used.



1.2.  Speech Enhancement Methods

There are several methods proposed for speech enhancement. The reported algorithms can be
categorized into two main classes as parametric and non-parametric methods. Parametric
approaches assume a model for the signal generation process. This model describes the
predictable structures and the observable patterns in the process. Noise reduction is performed
depending on this a-priori information. Since the enhancement is based on the parametric model,
selection of the model is crucially important in those algorithms. Non-parametric approaches
simply need an estimation of the noise spectrum. The noise spectrum can be estimated from the
pause periods where the speaker is silent (single channel) or from a reference source (multi
channel).

The speech enhancement methods can also be classified into single channel and multi channel
approaches. In case of single channel, there is only one microphone and therefore only one noisy
mixture which will just give spectral information. The noise spectrum has to be estimated from
the pause period and the noise is regarded as stationary and uninterrupted. This makes the single
channel speech enhancement challenging. That is why, the performance of the single channel
techniques are limited. In case of multi channel, multiple microphones are available in the
environment, leading more noisy mixtures which exhibit the advantage of incorporating both
spatial and spectral information. However, since multi microphones will come at an increased
cost and may not be always available, the single channel speech enhancement always attracts
attention.

In this thesis, we propose non-parametric and single channel speech enhancement algorithms.

Therefore, an introduction to some of the same types of noise reduction algorithms will be given.
1.2.1. Spectral Subtraction

Spectral subtraction is one of the earliest and most popular methods of reducing the effect of the
background noise. The very first spectral subtraction technique for speech enhancement was
given by Weiss et al, in 1974 (1). As discussed above, spectral subtraction is non-parametric
method which requires only an estimate of the noise spectrum. In case of single channel, that
estimation is done in the periods where the speaker is silent, which is referred as the pause
periods. The main idea of the method is to estimate the spectrum of the noise signal and to

subtract it from the mixture signal in order to obtain the original clean speech. Since the noise

3



spectrum is estimated from the pause periods and used for the whole data, spectral subtraction is
suitable for stationary noises or very slowly varying noises so that the change in the noise power

spectrum can be updated. Suppose that clean speech signal x(m) is corrupted with the noise n(m),

y(m)=x(m)+n(m) (1.1)
Taking the Fourier transform of the signals will yield;
Y (") = X(&") + N(¢™) (1.2)
Multiplying both sides with their complex conjugates will give;
Y (@))° = 1X @) + [N (") + 21X (")|IN (€")]cos(A6) (1.3)
Where 46 is the phase difference between speech and noise:
A0= 2 X (") - Z N (") (1.4)
Taking the expected value of both sides we get:

E{Y (¢")1°)= E{\X (") "]+ E{|N (")} E{2X (¢"")|IN (€"")|cos(40)},
= E{X (")} E(IN (€")}+ 2E{X (¢")|JE{IN (¢")|}E{cos(40)} ~ (1.5)

In deriving the last equation, two reasonable assumptions are being made:

1. Noise and speech magnitude spectrum values are independent of each other.

2. The phase of noise and speech are independent of each other and of their magnitude.
There have been many proposed methods based on spectral subtraction. It is possible to classify

them in two main classes,

1.2.1.1. Power Spectral Subtraction
In power spectral subtraction, it is assumed that E{cos(46)} in (6) is zero, yielding:
E{|Y (¢")F}= E{IX (")} E{N (")} (1.6)

The power spectrum of the noise is estimated from the speech inactive periods and assuming that
the variations of noise spectrum are tolerable, it is subtracted from the noisy speech spectrum in

order to obtain the enhanced speech.

X () =Y (@) - E{N (&™)} (1.7)



1.2.1.2.  Magnitude Spectral Subtraction

In magnitude spectral subtraction it is assumed that E{cos(A46)}=1, hence:

E{|Y (€°)]'}= E{|X ()|} + E{IN ()|} T2E(X (¢)E{IN (€°)]}
= (E{|X (€°)|}+ E{IN (¢)|})

E{|Y (¢°)|}= E{|X (¢)|}+ E{IN ()|} (1.8)

The magnitude spectrum of the noise is averaged during speech inactive periods and with the
same assumptions that the noise is stationary, the magnitude spectrum of speech is estimated by

subtracting the average spectrum of noise from the magnitude spectrum of the mixture signal (2).

E{|X (¢°)|}= E{|Y (€°)|}- E{IN ()|} (1.9)

Figure 1.2 shows an illustration of the magnitude spectral subtraction algorithms.

A A

| /\X(@ — N W)
:__ Na .

7y

Magnitude
Magnitude

€

Figure 11.2: Spectral magnitude subtraction. The noise and noisy observation magnitude spectrum is

illustrated to the left and the estimated signal magnitude spectrum is illustrated to the right.

1.2.1.3. Residual Noise Problem

A common problem for different kinds of speech enhancement algorithms is that as a result of
the fluctuations of noise spectrum (whether power or magnitude) around its mean value, there is
always some difference between the actual noise and its mean. Hence at the end of the spectral
subtraction, some of the noise remains in the spectrum in the case that the value of noise is

greater than its mean and some of the speech spectrum also is removed in the case that our



estimate of noise is greater than the actual value of noise. The latter produces negative values in
spectrum as illustrated in Figure 1.2. These negative values are prevented or often corrected by
the use of a full wave rectifier or a half wave rectifier with different techniques. However, the
overall effect puts a noise in the output signal known as residual noise. The narrow band
relatively long-lived portion of residual noise is sometimes referred to as musical noise. In order

to better understand the musical noise artifact, the following description helps;

“To explain the nature of the musical noise, one must realize that peaks and valleys exist in
the short—term power spectrum of white noise; their frequency locations for one frame are
random and they vary randomly in frequency and amplitude from frame to frame. When we
subtract the smoothed estimate of the noise spectrum from the actual noise spectrum, all spectral
peaks are shifted down while the valleys (points lower than the estimate) are set to zero (minus
infinity on a logarithmic scale). Thus, after subtraction there remain peaks in the noise spectrum.
Of those remaining peaks, the wider ones are perceived as time varying broadband noise. The
narrower peaks, which are relatively large spectral excursions because of the deep valleys that

define them, are perceived as time varying tones which we refer to as musical noise (3).”

1.2.2. Wavelet Thresholding

Wavelet transform has been widely used in various fields of signal processing. Due to its
advantage of using variable size time-windows for different frequency bands, wavelet transform
is a powerful tool for modeling non-stationary signals like speech. Moreover, in case of single
channel speech enhancement, generally the use of the sub-band processing can result in a better
performance. Therefore, wavelet transform can provide an appropriate model of speech signal
for denoising applications.

In case of a noisy speech signal, the energy of the clean speech is mostly concentrated in a small
number of wavelet dimensions. On the other hand, the energy of the noise signal is spread over a
large number of coefficients. That is why; the coefficients of a small number of dimensions
where clean speech is present are relatively large compared to those of other dimensions. Hence,
by defining a threshold value and setting smaller coefficients to zero, one can nearly optimally

eliminate noise while preserving the important information of the original signal (4).



Suppose that the clean speech signal x(m) is corrupted by zero-mean, white Gaussian noise n(m)

with variance o7, as in (1.1). By applying the discrete wavelet transform, we will have;

Wy=Wx+Wn (1.10)

where W denotes the wavelet transformation. The wavelet of observation mixture signal is
thresholded in order to obtain the original speech signal. The thresholding can be done in many
ways. Different techniques have been proposed for this purpose. However there are two popular

versions known as hard and soft thresholding.

1.2.2.1. Hard Thresholding
Let Y refer the coefficients of a wavelet dimension of the noisy mixture signal and 7 be the

threshold value for the denoising strategy. Hard thresholding sets any coefficient whose absolute

values is less than or equal to the threshold to zero;

_ {Y if Y] >T

=l Lifivi<r (.11

where ¥ denotes to the thresholded coefficients. The value of 7 is related with the estimated
standard deviation of the noise signal ¢ and may change depending on the proposed algorithm.

Donoho has suggested the following formula for its value;

T = ./2log (N) (1.12)

1.2.2.2. Soft Thresholding
Soft thresholding sets any coefficient with absolute value less than or equal to the threshold to

zero and subtracts the threshold value from the other coefficients.

7= {sgn(y)(IYl —ITh) if |Y]|>T

0 f Y| <T (1.13)

Those thresholding algorithms are widely used and have been also adapted in spectral
subtraction methods, with Fourier transform analysis. It can be observed that the soft
thresholding algorithm removes more noise components than the hard thresholding algorithm.
However in soft thresholding the amount of the signal degradation is also higher. Therefore, the

thresholding strategy should be selected depending on the subjective and objective perspectives.



1.3.  Applications of Speech Enhancement

In the current information technology, there are many areas that speech enhancement is used in

order to improve the performance of the system;

e Robust Automatic Speech Recognition (RASR): The accuracy of automation speech
recognition degrades in the presence of background noise or other interfering sources.
Noise reduction for speech signals has therefore critical importance as a pre-process of
such types of systems, including human-computer interactions, robotics and audio driven

systems, etc.

o Telecommunication: Background noise is a common problem which degrades the quality
of the communication for the human listener. Speech enhancement may be applied to
such systems in order to remove the unwanted noise sources. Another problem in
telecommunication is the channel noise. By enhancing the speech signal before it goes

into the channel, it is also possible to reduce the effect of the channel noise.

e Digital Hearing Aids: The digital hearing aid users often complain of difficulty in
understanding speech in the presence of background noise. Therefore, speech
enhancement is an important process to improve the speech perception in a noisy

environment for the human listener.



1.4. Thesis Overview

As discussed in section 1.2., there are many speech enhancement methods including the
parametric and non-parametric, single and multi-channel approaches. Since the single channel
algorithms depend only one source, they are more challenging compared to the multi-channel
algorithms. However, due to its low cost and simplicity of single microphone systems, single
channel speech enhancement is significantly important and attracts attention of the researchers
interested in this field of study. This thesis is focused on a single channel and non-parametric

speech enhancement method that does not require any a priori knowledge of the noise signal.

1.4.1. Problem Statement

As discussed above, many of the reported speech enhancement algorithms suffer from the
residual noise problem often referred as the musical noise. In single channel speech enhancement,
the residual noise is an inevitable issue; therefore the algorithms are mainly concerned to
minimize its effect. Fourier transform and wavelet analysis have dominated the speech
processing algorithms. However they both suffer in the analysis of non-stationary signals.
Fourier is powerful for periodic signals and easy to implement but not suitable for non-linear and
non-stationary signals like speech. Wavelet is more suitable for non-stationary signal analysis,
but once the basic wavelet is selected, one should follow it to analyze the whole data. Moreover,
since the most commonly used Morlet wavelet is Fourier based, it also suffers from many
shortcomings of the Fourier analysis. Therefore, an analysis that is highly applicable to non-
linear and non-stationary signals is desired.

In a noisy mixture, it is easier to remove the noise components from a frequency band where
speech is not present. At a frequency band where both speech and noise are present, it is very
hard to identify and remove the noise components without degrading the speech signal. Hard
thresholding prefers not to remove the noise signal in those bands, while soft thresholding takes
the risk of degrading the quality of the speech signal in order to remove some of these noise
components. Therefore in the spectral domain it is not easy to identify and remove the noise
parts whose frequencies are same as that of the speech components at a time instant. Therefore

an analysis which will roughly separate the noise and speech in the time domain is desired.



The empirical mode decomposition (EMD), recently been pioneered by Huang et. al. as a new
and powerful data analysis method for nonlinear and non-stationary signals has made a new and
effective path for speech enhancement studies. Basically, EMD is a data-adaptive decomposition
method with which any complicated data set can be decomposed into zero mean oscillating
components, named intrinsic mode functions (IMFs) (5). Such functions give sharp and
meaningful identifications of instantaneous frequencies. The IMFs may have frequency overlaps,
but at any time instant the instantaneous frequencies represented by each IMF will be different.
Therefore EMD is not band pass filtering, but is an effective decomposition of non-linear and
non-stationary signals in terms of their local frequency characteristics. With this powerful
property, in case of a noisy speech signal, EMD makes it possible to successfully separate the
noise components that are imbedded in speech signals. Each IMF will still have speech and noise
components but the intensity and the distribution in time will be different. Therefore it is possible
to have an effectual identification of the noise components. In this thesis, we are proposing EMD

based thresholding algorithms for speech enhancement.

1.4.2. Outline of the Thesis

To increase readability, the chapters are briefly described in this section and thereby providing

an overview of the contents of the thesis.

e Chapter 2 includes detailed information about Empirical Mode Decomposition (EMD)
and gives some data analysis results in order to show the efficiency and superiority of

EMD to Fourier transform and Wavelet analysis in analyzing the non-stationary signals.

e Chapter 3 includes a DCT based soft thresholding algorithm for speech enhancement.
The soft thresholding strategy introduced here is effective in noise removal while paying
attention to the original speech. Our proposed methods are mainly based on this soft

thresholding strategy.

e Chapter 4 describes the proposed EMD based soft thresholding algorithm for speech
enhancement. The soft thresholding strategy given in Chapter 3 is adapted to the IMFs of

10



the noisy speech signal with some modifications. The method is very effective in noise
removal. Extensive experimental results prove the superiority of the proposed algorithm
to other recently reported techniques in terms of both SNR improvement and speech

quality. The major drawback of the algorithm is that it is mainly applicable to white noise.

Chapter 5 includes a hybrid DCT and EMD based soft thresholding algorithm. The DCT
soft thresholding is applied as a pre-process to the noisy speech signal. The remaining
noise components in the enhanced speech are further removed from its IMFs through an
EMD based soft thresholding. In order to provide robustness to different noise types, a
sub-band approach for the DCT domain is further given as a modification to the

algorithm.

Chapter 6 describes an EMD domain speech enhancement method based on joint hard

and soft thresholding criteria.

Chapter 7 includes the conclusion of the thesis work.
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Chapter 2

Empirical Mode Decomposition

2.1. Introduction

Data analysis is an essential part in pure research and practical applications. Linear and
stationary processes are easy to analyze, but the real world signals are mostly non-linear and
non-stationary. Analysis of such time varying data is not an easy process. Fourier spectral
analysis has provided a general and easy method for examining the global energy-frequency
distributions. As a result, the term spectrum has become almost synonymous with the Fourier
transform of the data. The spectrum gives us the frequencies that exist over the entire duration of
the data set. However, the main idea of time-frequency analysis is to understand and describe
where the frequency content of the data is changing in time.

The time-frequency (TF) representation, a two-dimensional function which indicates the energy
content of a signal as a function of both time and frequency, is a powerful tool for time-varying
signals. Therefore, TF representation provides temporal and spectral information simultaneously.
There exists a numerous number of TF representation methods of time domain signals, such as
short-time Fourier transform (STFT), wavelet transform, Wigner-Ville distribution, evolutionary
spectrum, empirical orthogonal function expression. Inside those, STFT and wavelet have
dominated the time-frequency analysis in signal processing.

The STFT represents the short time, snapshot like spectral representation which is nothing but a
limited time window-width Fourier spectral analysis. It is simply obtained by sliding a selected

size window along the time axis and applying Fourier transform in each segment. However,
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since it relies on the traditional Fourier spectral analysis, one has to assume the data to be
piecewise stationary. Therefore, in case of non-stationary signals, the STFT has limited usage.
Currently, the most famous time-frequency analysis method is wavelet transform. Wavelet
transform expands the signal in terms of wavelet functions which are localized in both time and
frequency. The most commonly used wavelet is Morlet, defined as Gaussian enveloped sine and
cosine wave groups with 5.5 waves (6). The problem with Morlet wavelet is the leakage
generated by the limited length of the basic wavelet function, which makes the quantitative
definition of the energy-frequency-time distribution difficult. Once the basic wavelet is selected,
one has to apply it for the whole data (7). Moreover, since Morlet wavelet is Fourier based, it
also suffers from many shortcomings of Fourier spectral analysis.

The most recently introduced technique for analyzing non-linear and non-stationary signals is the
Hilbert Huang Transform (HHT), which is a combination of Empirical Mode Decomposition
(EMD), recently pioneered by Huang et.al. (5) and Hilbert transform (HT). The key ingredient in
HHT is the EMD which decomposes the signal into many modes with different frequency
characteristics, called the intrinsic mode functions (IMFs), and thus also alleviates the problem
of sharp frequency change in the original signal. IMFs are free of riding waves; hence they give
sharp identifications of the instantaneous frequencies. Therefore they are highly suitable for
Hilbert transformation. Once these IMFs are obtained, HT is applied on each IMF in order to
obtain the time-frequency representation. Since EMD is specifically introduced for nonlinear and
non-stationary signals, it has attracted the attention of the researchers from many areas soon after
its introduction and has been implemented in numerous kinds of data, often proving its efficiency
and superiority.

In this chapter, we will give brief information to Empirical Mode Decomposition and in order to
show its efficiency in terms of analyzing the non-linear and non-stationary signals, a comparison

with Fourier and Wavelet analysis will be given in spectral domain.
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2.2. Empirical Mode Decomposition

Empirical mode decomposition (EMD) was recently developed by Huang et al. to decompose
any non-stationary and nonlinear signal into oscillating components obeying some basic

properties, called intrinsic mode function (IMFs).

2.2.1. Intrinsic Mode Functions

The principle of EMD technique is to decompose any signal s(f) into a set of band-limited
functions C,(f), which are zero mean oscillating components, simply called the IMFs. Each IMF
satisfies two basic conditions: (i) in the whole data set the number of extrema and the number of
zero crossings must be same or differ at most by one, (if) at any point, the mean value of the
envelope defined by the local maxima and the envelope defined by the local minima is zero (5).
The first condition is similar to the narrow-band requirement for a Gaussian process and the
second condition is a local requirement induced from the global one, and is necessary to ensure
that the instantaneous frequency will not have redundant fluctuations as induced by asymmetric
waveforms. The name intrinsic mode function is adopted because it represents the oscillation
mode in the data. With this definition, the IMF in each cycle, defined by the zero crossings,
involves only one mode of oscillation, no complex riding waves are allowed (5). IMF is not
restricted to a narrow-band signal; it can be both amplitude and frequency modulated, in fact it

can be non-stationary. A typical IMF can be observed in Figure 2.1.

IMF : h12 = =1
T

Benplilude

Figure 2.1: A typical IMF with the same numbers of zero crossings and extrema, and symmetry of the
upper and lower envelopes with respect to zero.

The idea of finding the IMFs relies on subtracting the highest oscillating components from the

data with a step by step process, which is called the sifting process.
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2.2.2. Sifting Process

Although a mathematical model has not been developed yet, different methods for computing
EMD have been proposed after its introduction (8, 9). The very first algorithm is called the

sifting process. The sifting process is simple and elegant. It includes the following steps:

1. Identify the extrema (both maxima and minima of s(7))

2. Generate the upper and lower envelopes (u(¢) and /(¢)) by connecting the maxima and
minima points by cubic spline interpolation

Determine the local mean m(¢)=[u(¢)+1(¢)]/2

Since IMF should have zero local mean, subtract out m,(¢) from s(z) to get /()

Check whether 4,(¢) is an IMF or not

S o kW

If not, use 4(¢) as the new data and repeat steps 1 to 6 until ending up with an IMF

Once the first IMF £,(¢) is derived, it is defined as C(#)=h;(¢), which is the smallest temporal
scale in s5(¢). To compute the remaining IMFs, C,(¢) is subtracted from the original data to get the
residue signal r(¢): r,(t) = s(t) — C;(t). The residue now contains the information about the
components of longer periods. The sifting process will be continued until the final residue is a
constant, a monotonic function, or a function with only one maxima and one minima from which

no more IMF can be derived (8). The subsequent IMFs and the residues are computed as:
() = C2(8) = 12(8), -+, 11 () = G (8) = 1, (8) (2.1)

At the end of the decomposition, the data s(7) will be represented as a sum of » IMF signals plus

a residue signal,

SO =) GO+ R© 22)
i=1

A noisy speech signal and some selected IMF components are shown in Figure 2.2. It can be
observed that higher order IMFs contain lower frequency oscillations than that of lower order
IMFs. This is reasonable, since sifting process is based on the idea of subtracting the component
with the longest period from the data till an IMF is obtained. Therefore the first IMF will have

the highest oscillating components; the components with the highest frequencies. Consequently,
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the higher the order of the IMF, the lower its frequency content will be. However, the IMFs may
have frequency overlaps but at any time instant the instantaneous frequencies represented by
each IMF are different. This phenomenon can be well understood in Figure 2.3 which shows the
instantaneous frequencies of the first 6 IMFs. Therefore EMD is not band pass filtering, but is an
effective decomposition of non-linear and non-stationary signals in terms of their local frequency

characteristics.

Empirical Mode Decomposition
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Figure 2.2: The illustration of EMD. A noisy speech signal at 10 dB SNR and its first 8 IMFs out of 14,
plus a residue signal which can be observed to be close to a constant.
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Figure 2.3: Instantaneous Frequencies of the IMFs.

2.2.3. Instantaneous Frequency

Instantaneous frequency (IF) represents signal’s frequency at an instance and it is defined as the
rate of change of the phase angle at the instant of the analytic (complex) version of the signal.
Every IMF is a real valued signal. Analytic signal method (10) is used to compute the
instantaneous frequency of the IMF components. The analytic signal corresponding to the m™

IMF C,,(¢) is defined as,
Zm(t) = Cq(t) + jRICn (D] = @ (£)e/om® (2.3)

where &[.] refers to the Hilbert transform operator, ,(f) and 6,(f) are the instantaneous
amplitude and phase respectively of the m™ IMF and j is the notation of complex term.

The Hilbert transform provides a phase-shift of +1/2 to all frequency components, whilst leaving
the real parts unchanged (10). The analytic signal is advantageous in determining the
instantaneous quantities such as energy, phase and frequency. Then the IF of the m™ IMF can

easily be derived as,

dBp, (t)

W () = — (2.4)
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where 8,,(t) is the unwrapped version of the instantaneous phase 6,,(t). The concept of IF is
physically meaningful only when applied to mono-component signals, which have been loosely
defined as narrow band. To apply the concept of IF to arbitrary signals it is necessary to first
decompose the signal into a series of mono-component contributions. Since EMD technique
decomposes any time domain signal into a series of mono-component IMFs, the derivation of IF

on each component provides the meaningful physical information.

2.2.4. Hilbert Spectrum

Hilbert Spectrum (HS) represents the distribution of the signal energy as a function of time and
frequency. Having obtained the IMFs, to construct HS of the signal, the Hilbert transform is
applied to each IMF and the instantaneous frequency is computed according to equation (2.4).

After performing this calculation, the data can be expressed in the following form;

n

X(t) = Z a; (t)e(jfwj(t)dt) (2.5)

i=1
Here the residue is left out, since it is either a monotonic function or a constant. It can be
observed that the Hilbert Huang Transform representation of the data in equation (2.5) gives both
amplitude and the frequency as functions of time. This makes HHT highly efficient for analyzing
non-stationary signals. Figure 2.4 illustrates the Hilbert Huang spectrum of the noisy mixture

signal shown in Figure 2.2.

Hilbert-Huang spectrum
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Figure 2.4: Hilbert Huang Spectrum of the noisy speech signal.
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2.2.5. Completeness and Orthogonality

The original data can be easily reconstructed by summing up all the IMFs obtained in the
decomposition as given in equation (2.2). When experimentally done, the difference between the
reconstructed and original data is less than 5 X 10715, the roundoff error from the precision of
the computer. Therefore EMD is a reversible representation which proves its completeness.

To measure the efficiency of EMD, the orthogonality of the decomposition should also be
checked. Higher the orthogonality corresponds to less amount of information leakage between
the IMFs. The orthogonality is satisfied in all practical sense, but is not guaranteed theoretically.
By virtue of the decomposition, all the IMFs should be locally orthogonal to each other, for each
element is obtained from the difference between the signal and its local mean through the

maximal and minimal envelopes (5). Therefore;

(x(®) = x(®))-x(t) = 0 (2.6)

Nevertheless, since the mean is computed via the envelopes, hence is not true mean, equation
(2.6) is not strictly true. Moreover, each successive IMF component is only part of the signal
constituting x(t). Therefore leakage is unavoidable; however any leakage should be small. To

check the orthogonality of IMFs, an overall index orthogonality, /O, is defined as;

1 T 1 M+1 M+1
10 = TZ;T@(Z Z C,(t) * m(t)) 2.7

=1 m=1

where / and m refers to the indices of the IMFs. Since the residue signal is also included, the
index goes to M+/ instead of M, the number of the IMFs. For the decomposition to be
orthogonal, /O should be zero. The theoretical value of the /0, given by Huang et.al., is less than
0.001, therefore very close to zero (5). The orthogonality therefore can be said to be satisfied.
Figure 2.5 illustrates the index of orthogonality values between all possible pairs of IMF
components of the noisy mixture signal shown in Figure 2.2. It can be observed that the
maximum value of the indices of orthogonality is in the order of 9 X 1073 and the overall index

of orthogonality is 0.054 which is close to zero.
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Figure 2.5: The values of indices of orthogonality between all possible pairs of IMFs.
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2.3. Comparison of HHT, Fourier and Wavelet

It can be observed that the Hilbert Huang Transform representation of the data in equation (2.5)
gives both amplitude and the frequency as functions of time. This makes the HHT highly
efficient for analyzing non-stationary signals. The same data if expanded in Fourier

representation would be;

n

X(6) = Z a; eloit (2.8)

i=1

where both a; and w; are constants. The contrast between the two equations is clear: the IMF
represents a generalized Fourier expansion. The variable amplitude and the instantaneous
frequency have not only greatly improved the efficiency of the expansion, but also enabled the
expansion to accommodate non-stationary data. With IMF expansion, the amplitude and the
frequency modulations are also clearly separated. Thus, we have broken through the restriction
of the constant amplitude and fixed-frequency Fourier expansion, and arrived at a variable
amplitude and frequency representation. This expression is numerical. If a function is more
desired, an empirical polynomial expression can be easily derived from the IMFs (5).

In order to observe the superiority of the HHT to the STFT, an illustration of time-frequency
analysis of a frequency modulated (FM) signal is given here. Figure 2.6 shows an FM signal with
a sampling rate of 1 kHz. The STFT spectrum for the FM signal is given in Figure 2.7(a) with
256 point FFT and a Hamming window of 30ms with 60% overlap. It can be observed that with
even such a stationary FM sinusoidal signal, the STFT has produced a band of energy with a
remarkable amount of cross-spectral terms. On the other hand, the Hilbert Huang spectrum of the

signal, depicted in Figure 2.7(b), gives extremely sharp identifications spectral components.

FM Signal
1 T
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[¢5]
=]
=]
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o
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time, sec

Figure 2.6: A frequency modulated signal carrying a 2 Hz sinusoid with a carrier frequency of 100 Hz at

a sampling rate of 1 kHz.
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Figure 2.7: Comparison of HHT and STFT spectrum. a) STFT spectrum of the FM signal with, 256 point

FFT (Hamming window 50ms with 60% overlap) b) Hilbert Huang Spectrum obtained by
applying the Hilbert transform to the IMFs of the FM signal.

Wavelets have been widely used in analysis of the non-stationary data. Indeed, it is very useful
for analyzing data with gradual frequency changes. As discussed before, the most commonly
used Morlet wavelet is Fourier based, therefore it suffers many shortcomings of the Fourier
spectral analysis. However the main problem with wavelet is its leakage generated by the limited
length of the basic wavelet function, which makes the quantitative definition of the time-
frequency-energy distribution difficult. Moreover, sometimes the interpretation of wavelet can
also be counter-intuitive. For instance, one must analyze the result in the high frequency range in
order to define a change occurring locally, since the basic wavelet is more localized in the higher
frequencies. Therefore, if a local event occurs in low frequency range, in order to observe its
effects, one will still have to look to the high frequency range. Another difficulty of the wavelet
analysis is its non-adaptive structure, once the basic wavelet is selected, it must be used to
analyze all the data, which is against the nature of the non-stationary signals. Despite these
problems, Wavelets have been paid enormous attraction for the analysis of non-stationary data.

The Hilbert Huang Transform, as given in equation (2.5) represents the non-stationary data in
terms of a small number of IMF components with well defined instantaneous frequencies. Being
data-adaptive and local, it is highly effective for analyzing non-linear signals. As a result, HHT
spectrum gives much sharper time-frequency-energy distribution than the Wavelet analysis. As
an illustration to observe the superiority of HHT, a wind data and its HHT and wavelet

spectrums can be observed in Figure 2.8. It can be observed that HHT gives very sharp

23



identification of the frequencies at all time instants. The wind energy is distributed in skeleton
lines, representing each IMF. However, the spectrum obtained by wavelet is very blurred. Wind

energy appears in smoothed contours with a rich energy distribution in the high harmonics.
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Figure 2.8: Comparison of HHT and Wavelet spectrum. a) Wind data b) Hilbert Huang Spectrum
obtained by applying the Hilbert transform to the IMFs of the FM signal. ¢) The Morlet

wavelet spectrum for the wind data with 200 frequency cells.

The major drawback of EMD comes from its computational cost. As the name suggests, the
IMFs are found through an empirical process not through a mathematical expression. That is
why; EMD is not efficient for real time processes. However, many researchers are working to

derive a mathematical expression and long steps have already been taken (11, 12).
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2.4. Empirical Mode Decomposition for Speech Signals

Due to its efficiency in decomposing the non-stationary signals in terms of zero-mean oscillating
components with well behaved instantaneous frequencies, EMD has been adapted to almost all
kinds of data analysis soon after its introduction, always proving its efficiency (13). Therefore
EMD has made a new and effective path for many signal processing research areas. Speech
processing is one of these fields that EMD has successfully been applied (14, 15, 16, 17, 18).

As explained in Section 2.2., the idea of finding the IMFs relies on subtracting the highest
oscillating components from the data, called the sifting process. Therefore the IMFs have
different frequency characteristics; the upper the IMF, the higher its frequency content. The
IMFs may have frequency overlaps but at any time instant the instantaneous frequencies
represented by each IMF is different, the upper one having the higher frequency. With these
powerful characteristics, recent studies have shown that it is possible to successfully identify and
remove a significant amount of the noise components from the IMFs of a noisy speech. Although
all IMFs contain energy from both the original speech and the noise, the amount of the energy
distribution is different. Since speech signals are mainly concentrated in the low and mid
frequency bands, the high frequency noise components dominate the first IMFs. For instance, in
case of white noise, most of the noise components are centered on the first three IMFs, while the
speech signals dominate between 3" and 6™ IMFs, as can be observed in F igure 2.2. Therefore,
EMD makes it possible to at some extent separate the high frequency noise from the major
speech components.

In this thesis we have shown that by applying a thresholding algorithm, it is possible to
successfully eliminate the noise components from each IMF. Since we do not want to degrade
the original speech while having an effective noise removal, a frame based soft thresholding
strategy proposed by (19) has been adapted to the IMFs, with some modified criteria. Therefore
before further going on the proposed algorithms, to make the flow of thesis more comprehensible,

it would be appropriate to give brief information about the algorithm given in (19).
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Chapter 3

DCT Soft Thresholding

3.1. Introduction

Soft thresholding is a powerful technique used for removing the noise components by subtracting
a constant value from the coefficients of the noisy signal obtained by the analyzing
transformation. Transform domain speech enhancement methods commonly use amplitude
subtraction based soft thresholding defined by (4, 20);

£, = (OO — ) 1K <o o)

0 , otherwise

where a,, denotes the standard deviation of the noise, X}, is the £’th coefficient of the noisy signal
obtained by the analyzing transformation and X, represents the corresponding thresholded
coefficient. Since all the coefficients are thresholded by o, the speech components are also
degraded during this process. This degradation results in a loss in speech quality. Together with
the residual noise problem discussed in Section 1.2, the enhanced speech may be even less
desired than the noisy mixture.

Unlike the conventional constant noise-level subtraction rule in equation (3.1), a new soft
thresholding strategy was proposed in (19). The later one is capable to remove the noise
components while giving significantly less damage to the speech signal through a linear vector

thresholding instead of a constant.
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The strategy depends on segmenting the signal into short time intervals and applying Discrete
Cosine Transform (DCT) on each frame. The DCT coefficients represent the whole frequency
band within that interval. The signal is divided into frequency bands, therefore each time interval
is represented by frequency bins. The frequency bins are categorized as either signal or noise
dominant depending on its speech and noise energy distribution. Figure 3.1 shows an illustration
of a typical noise and speech dominant frequency bins. The problems of the conventional contant
noise level subtraction rules given in (3.1) can be well observed in this figure. For instance, it is
apparent from Figure 3.1(a) that subtracting a constant value from the noisy speech coefficients
in order to obtain the clean speech coefficients is inadequate. Furthermore, due to the second part
of thresholding a significant amount of speech information may be lost, resulting as a source of
musical noise. Therefore a linear thresholding is followed in noise dominant frames. On the other
hand, Figure 3.1(b) proves that soft thresholding is very inaccurate for signal dominant
frequency bins and will most probably degrade the speech components, therefore giving more
damage than its contribution to the enhanced speech. Therefore, the signal dominant frames
should better be kept as they are in order not to degrade the high energy speech components.
This enables even signal with high SNRs to be processed effectively.
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Figure 3.1: A typical; a) noise dominant bin, b) signal dominant bin.
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3.2. Frequency Bin based DCT Soft Thresholding

The noisy speech is segmented into 32 ms frames and a 512 point DCT is applied on each frame.
The DCT coefficients of the frames are further divided into 8 frequency bins, each containing 64
DCT coefficients. For adaptive thresholding, each bin is categorized as either signal or noise-
dominant, as discussed in Section 3.1. The classification pertains to the average noise power

associated with that particular bin. If for the i’th bin
i 64 ,
@Z x| 202 (3.2)
k=1

where an denotes the variance of the noise and X,Ei) is the k’th DCT coefficient of the i’th
frequency bin, then this bin is characterized as signal dominant, otherwise as noise dominant.
The signal dominant bins are not thresholded, since it is highly possible to degrade the speech
signal, especially for high SNRs. In case of a noise dominant bin, absolute values of the DCT

coefficients are sorted in ascending order and a linear thresholding is applied:
%, = sign(X)[max{0, (X, | — m))] (33)

where the multiplication mj is a linear threshold function as can be observed in Figure 3.1(a)

while j being the sorted index-number of | X |. An estimated value of m can be obtained as

O-n
m=——=>" (3.4)

2[1
ngil k2

where 6., = 1 g,. It is evident from equation (3.2) that for the noise-dominant frequency bins, the
average noise power added would be less than the average noise power estimated over the entire
speech signal. Here, the added average noise power over any of these frequency bins is denoted
as 0,.To find a reasonable value for A= (0., g,), three speech signals contaminated with white
noise at 10dB SNR are used. Using the strategy in equation (3.3) at each frequency bin, the noise
dominant ones are identified and the value of 1 is calculated by simply dividing the variance of
that frequency bin with the overall noise variance. The sorted variation of 4 is shown in Figure

3.2. It can be observed that the value of 4 vary between 0.2 and 0.8 for all of the speech signals.
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Therefore, experimentally, the value of 4 should be selected in this range. For signals with low
SNRs, the higher 4 gives better SNR improvement. On the other hand, for signals with high
SNRs, a lower value results in better performance. The spectrograms of the clean, noisy and
enhanced speech signals for A=0.5 and A=0.8 can be observed in Figure 3.3. It can be observed
that with A=0.8, the noise removal is more however the speech degradation is also higher, hence
effecting the speech quality. Therefore, the choice of A should depend on subjective and

objective purposes.
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Figure 3.2: The calculated value of A in the noise dominant frequency bins.
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Figure 3.3: The spectrogram of a) clean, b) noisy and enhanced speeches c¢) for =0.5, d) for 1=0.8.
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Chapter 4

EMD Based Soft Thresholding

4.1. Introduction

The empirical mode decomposition (EMD), recently been pioneered by (5) as a novel and
powerful data analysis method for nonlinear and non-stationary signals has made a new and
effective path for speech enhancement studies. As given in Chapter 2, EMD is a data-adaptive
decomposition method with which any complex signal can be decomposed into zero mean
oscillating components, the intrinsic mode functions (IMFs). Recent studies have shown that
with EMD, it is possible to successfully remove the noise components from the IMFs of the
noisy speech.

Soft thresholding strategy proposed by (19) is a powerful technique for removing the noise
components from the noisy signal while paying attention on the original speech. Since the signal
dominant frames are not thresholded, the algorithm enables even signals with high SNRs to be
processed effectively, where most reported methods even fail to hold on to the input SNR.
However, this is also a drawback, since it is not possible to efficiently remove the noise
components that are embedded in the higher energy speech components. Since the categorization
of the frequency bins depend on the global noise variance, many noise dominant bins can be
identified as signal dominant due to the fluctuations in the noise variance of the frequency bins.
As a result, the remaining noise components from both the noise and signal dominant frames will

result in an irritating musical noise. In addition to this, another disadvantage of the method
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comes from the categorization in spectral domain. Since the DCT coefficients of each frame are
divided into 8 frequency bins thus forming 8 sub-bands, we may have a sharp increase between a
thresholded noise dominant frequency bin and a non-thresholded signal dominant frequency bin
in the spectral domain. This also results in an irritating effect in the musical noise. All these
drawbacks can be significantly reduced with the proposed EMD based soft thresholding strategy.
In this chapter, we illustrate a novel speech enhancement method based on applying the soft
thresholding algorithm with EMD. The proposed method is significantly effective in noise
removal. Since the extraction of the IMFs relies on frequency characteristics, the IMFs with
higher index contain lower frequency components. This property helps the noise and speech
components to be roughly separated in terms of frequency and to dominate in different IMFs. For
instance, in case of white noise, the noise components dominate in the first few IMFs, mainly in
the first one and the speech components dominate in the later IMFs. Therefore, the noise parts
that are embedded in speech signals can also be extracted and thresholded. In order to identify
the noisy frames in an efficient way, the proposed method also includes a modification in the soft

thresholding strategy and a specific approach for each IMF of the noisy speech.
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4.2. EMD based Soft Thresholding

First of all, EMD is applied to the noisy speech in order to obtain the IMFs of the signal. In DCT
soft thresholding given in Chapter 3, the signal is divided into 32 ms frames and further divided
into 8 frequency bins with 64 data each. EMD is not a transformation from time domain to
spectral domain; rather it is a decomposition of the time domain signals into IMFs, which are
also time domain signals. Therefore, the obtained IMFs are divided into 4 ms frames, thus each
having 64 data for a 16 kHz sampling frequency and instead of the name frequency bin, it is
more appropriate to use the definition ‘frame’ to refer to the time frames.

Similar to the DCT case, these frames are characterized as either a signal dominant or a noise
dominant frame. However for categorizing the frames, unlike the limit defined in (3.2), a novel
strategy is introduced here. This new soft-thresholding strategy provides an effective limit for the
frame categorization. Moreover, the noise variance used in thresholding is estimated separately
for each IMF. This new strategy is applied to the IMFs of the noisy speech signal and the
enhanced speech is obtained from the thresholded IMFs. A block diagram of the algorithm can

be observed in Figure 4.1.
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Figure 4.1: The block diagram of the proposed EMD soft thresholding method.
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4.2.1. A Novel Soft Thresholding Strategy

The categorization of the frames is one of the key points of the soft thresholding algorithm. The
main purpose in this categorization is to make it possible to eliminate the noise signals without
degrading the original speech components. This makes the soft thresholding algorithm to be
applicable for a wide range of SNR values. However, applying this algorithm directly to the
IMFs of the noisy speech signal will fail for two reasons. First, IMFs will have different noise
and speech energy distribution, which suggests that each IMF will have a different noise and
speech variance. Second, due to the decomposition, the variance of the IMF frames will have
more fluctuations than that of the noisy speech frames. Therefore the noise variance of each IMF
should be defined separately and the limit for frame categorization should have a larger value
then the limit defined in (3.2), in order to guarantee that all the noisy frames are thresholded.

A novel limit relies on the idea that a frame can be defined as a noise dominant frame, if the
noise power within that bin is greater than the speech power. Therefore, the limit should be set to

the case where the noise and speech variance (o, and o,°) are same. For any frame;
2 _ 2
O(frame) = O(sf+nf) (4.1)

thuS, O-(Zframe) = O'szf + O-T%f + 2 * COU(S, n) (42)

where G(meme) denotes the noise variance of a frame, and aszf and a,ff refer to the speech and

noise variance within that frame, consecutively. In case of independence of speech and noise, the

covariance between the two will be zero, thus we have;
2 _ 2 2
O(frame) = Osf T Ony (4.3)
For equal noise and speech power, we get;

2 _ 2 2 95y =0ns 2 o 2
U(frame) - Jsf + O-nf _ a(frame) - zanf (4-4)

Therefore, in case of equal noise and speech power, with the assumption of independency, the

variance of a frame is equal to twice the noise variance. That is why; the limit for the
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categorization of frames should be set to two times of the globally estimated noise variance.

With the proposed strategy, if for the i’th frame;
1 &
.2
2D Kl 2202 (45)
k=1

where X}, ,,, denotes the samples of the frames of the m’th IMF and aﬁjmdenotes the estimated
noise variance of this IMF; then this frame is defined as signal dominant, otherwise as a noise
dominant frame. Signal dominant frames are not thresholded. In case of a noise dominant frame,

absolute values of the frame samples are sorted in ascending order and a linear thresholding as in

(3.3) is applied;
Xy = sign(X,)[max{0, (|1X,| —mj)}] (4.6)

Here X, refers to the thresholded samples and the multiplication mj is the linear threshold
function while j being the sorted index-number of |X| . An estimated value of m can be obtained
as;

U—n,m

ngil k2

where o_; ,, = A0y, ;. As discussed in Chapter 3, a reasonable value of 1 is between 0.2 and 0.8.

4.2.2. Variance of the IMFs

The estimation of the variance of each IMF plays an important role in the performance of the
proposed EMD domain soft thresholding algorithm. In order to estimate the variance, the IMFs
are divided into 4 ms frames and the variance of each frame is stored in a variance array. The
variance array is sorted in ascending order. Since the speechless parts will mostly have the
lowest variance, the noise variance of the IMFs can be estimated from these speechless parts of
the array. Figure 4.2 shows a plot of the variance of the frames for the first 6 IMFs of a noisy
speech signal at 10dB. The differences in between the noise variance and the length of the
speechless parts of the IMFs can be observed in Figure 4.2. It can be observed that the noise

signals are concentrated in the first 3 IMFs. The later IMFs are mainly the speech signals, but
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also have significant amount of noise. With this method, we can have a very good estimation of
the noise variance of each IMF. By using the IMF’s specific noise variance, with the proposed

soft thresholding algorithm, the noise components in all the IMFs can effectively be removed.
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Figure 4.2: Sorted variance of 4ms frames for the first 6 IMFs of a noisy speech at 10dB SNR.
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4.3. Experimental Results

To illustrate the effectiveness of the proposed algorithm, extensive computer simulations were
conducted with different 10 male and 10 female utterances, which were randomly selected from
TIMIT database. In order to observe the performance for a wide range of input SNRs, weighted
white noise samples from NOISEX database were added to the clean speech signal to obtain the
noisy signals at different SNRs. White noise is considered here, since it is the most common type
of noise in real world applications and it has been reported that this type of noise is more difficult
to detect and remove than any other type (21). The reported algorithms usually results in a
residual noise. Our proposed method is very effective in removing the noise components while
significantly reducing this residual noise.

For a better understanding of the algorithm, Figure 4.3(a) shows the waveforms of the first 5
IMFs of the noisy speech signal “Don’t ask me to carry an oily rag like that.” from the TIMIT
database. The corresponding denoised IMFs are illustrated in Figure 4.3(b).

IMFL IMF1
T T

0.02

Amplitude
S oS
) Amplitude
&S o
§ § S oS

| |
0 05 1 15 2 25 3 0 05 1 15 2 25 3
time, sec time, sec

Figure 4.3: The waveforms of a) the first 5 IMFs of the noisy speech signal, b) the corresponding
thresholded IMFs.

37



Figure 4.4 illustrates the spectrograms and the waveforms of the clean speech, noisy mixture at
10 dB SNR and recovered speech signals for different denoising algorithms and the proposed
scheme. Here in order to observe its effect, the results are given for two values of A (A=0.5 and
A=0.8) both for DCT soft thresholding and proposed EMD based thresholding methods. For both
values of A, it can be observed that the proposed algorithm significantly performs better than the
DCT soft thresholding algorithm. For A=0.5, there is still significant remaining noise in the
enhanced speech. On the other hand, for A=0.8, although the noise components are effectively
removed, there is some speech degradation in low energy speech components. Therefore, we can
conclude that the choice of A should be somewhere between these values in order to have a better
performance. However, we will observe that the optimum value of A differs depending on the

SNR of the noisy mixture signal.
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Figure 4.4: The spectrogram of a) the clean speech, b) noisy mixture at 10 dB (white noise), and
enhanced speech with c¢) Wavelet packets thresholding (20), d) DCT hard thresholding (22),
e) DCT soft thresholding (A=0.5), f) DCT soft thresholding (A=0.8), g) proposed method
(2=0.5), h) proposed method (A=0.8)
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The average SNR improvement results of the computer simulations for 10 male and 10 female
utterances randomly selected from TIMIT database are listed in Table 4.1 for a wide range of
SNR values. The superiority of the proposed scheme can be well observed in this table. The
proposed algorithm is performing significantly better than other reported methods. Since the
signal dominant frames are never thresholded, there is still a significant improvement even in
case of high SNR values where most proposed methods even fail to hold on to the input SNR.
The main reason is, for high SNRs, the noise power is significantly less compared to the speech
power. Therefore it is much harder to identify and remove the noise components without
degrading the speech signal. By introducing the EMD, this problem is solved very effectively.
Since the IMFs depend on the frequency content, the high frequency noise components
embedded in the speech signal are effectively separated from the speech components. As we
discussed, these high frequency noise components dominate the first few IMFs. Therefore, these
IMFs mainly include the noise dominant sub-frames and with the proposed soft thresholding
algorithm, they are effectively denoised.

In Table 4.1, the dependency of the optimum value of A on the input SNR can be well observed.
It is better to have a higher A for low input SNR values, and to have a lower A for high input
SNRs. That is why, before giving further experimental results, an empirically defined optimum

value for 4 depending on the estimated input SNR is proposed here.

Table 4.1: Comparison of the SNR improvements of different denoising methods.

Output SNR (dB)
Input SNR Soft DCT | Proposed | Soft DCT | Proposed
(dB) WP DCT (1=0.5) EMD (1=0.8) EMD
(20) (22) (19) (1=0.5) (19) (1=0.8)

0 4.86 5.69 5.33 5.67 6.49 7.01

5 8.86 9.76 9.67 10.14 10.04 10.41
10 12.36 13.74 13.75 14.12 13.45 14.06
15 15.45 17.65 17.93 18.15 17.56 18.01
25 20.82 25.53 26.35 26.78 26.03 26.35
30 23.16 29.52 30.56 31.28 30.28 30.89
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4.4 Optimum value of 4

The soft-thresholding algorithm can be further improved by defining an optimum value for 1. As
we discussed, it is better to have a higher value of A for low SNRs and a lower value for high
SNR input signals. This dependency of A on the input SNR can be better observed in Figure 4.5,
which shows the effect of 1 on the SNR improvement results at different input SNRs. Therefore,
the optimum value of A4 can be related with an estimated value of the input SNR. An estimation

of the SNR of the noisy speech signal can be obtained as explained below.
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Figure 4.5: The effect of A on the SNR improvement results at different input SNRs.

Similar to the noise variance estimation of the IMFs, the SNR estimation of the noisy speech
signal —the input SNR- can be performed by segmenting the signal into frames. In order to
achieve a reasonable estimation of the input SNR, the noisy speech signal is divided into 4 ms
frames and the variance of each frame is stored in a variance array which is sorted in ascending
order. The noise variance of the noisy speech, 6,2,;s., can be estimated from the speechless parts

of this array.
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Similar to (4.3), due to the independency of noise and speech, the variance of the noisy mixture

(02 ixture) i €qual to the sum of the speech variance and noise variance;

2

— 2 2
Omixture — Gspeech + Onoise
2 _ 2 2
thus, Uspeech = Omixture Onoise

The input SNR can be estimated by

2
SNRippue = 1010g (%)

Substituting (4.9) into (4.10) gives

Ufwisy_grzwise
SNRinpue = 10 log (2—)

noise

After extensive computer simulations, the optimum value of A is obtained as

Aopt = 0.7 = 0.01 * SNR;p ¢
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4.5. Experimental Results and Discussions

To illustrate the effectiveness of the proposed algorithm with the optimum value of A extensive
computer simulations were conducted with different 10 male and 10 female utterances, which
were randomly selected from TIMIT database. In order to observe the performance for a wide
range of SNRs, weighted white noise samples from NOISEX database were added to the clean
speech signal to obtain the noisy signals at different SNRs. For evaluating the performance of the
method, overall and average segmental SNR improvements as well as objective speech quality
results were used. The speech quality of the enhanced signals has been tested with the Perceptual
Evaluation of Speech Quality (PESQ) algorithm provided by OPTICOM (23). PESQ provides
accurate results for speech quality and is widely considered and used as the best algorithm as an

estimation of a subjective test.

frequency, kHz

0a 1 15 2 25 3
time, sec

Figure 4.6: The spectrogram of a) the clean speech, b) noisy mixture at 10 dB (white noise), and
enhanced speech with ¢) Wavelet packets thresholding (20), d) DCT hard thresholding (22),
e) DCT soft thresholding (Aopt), f) proposed method (Aopt)
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Figure 4.6 illustrates the spectrograms of the clean, noisy and recovered signals for the female
speech signal ‘Don’t ask me to carry an oily rag like that.’ from TIMIT database. It can be
observed that the proposed algorithm performs significantly better than other reported methods.
With the optimum value selection of A, the noise signal is mostly removed with significantly low
damage to the original speech. Figure 4.4(g)-(h) should be taken into account in order to better
understand the effect of the optimum value of A on the performance of the system. For A=0.5,
there is still remaining noise components as in Figure 4.4(g) and for A=0.8, the noise signal is
mostly removed however with a significant degradation to the original speech. Figure 4.6(f)
shows the performance of the optimum value of A which from equation (4.12) appears to be 0.6
for 10dB input SNR. Figure 4.7 shows the corresponding waveforms of the clean, noisy and

enhanced speech signals.
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Figure 4.7: The waveform of a) the clean speech, b) noisy mixture at 10 dB (white noise), and enhanced
speech with ¢) Wavelet packets thresholding (20), d) DCT hard thresholding (22), ¢) DCT
soft thresholding (Aopt), f) proposed method (Aopt)
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The power of the algorithm is not only limited with these results. Similar to the DCT soft
thresholding case, the algorithm can be applied for a wide range of SNR values, basically for any
value. Since the signal dominant frames are never thresholded, there is still a significant
improvement even in case of high SNR values where most proposed methods even fail to hold
on to the input SNR. The average results of the computer simulation for 10 male and 10 female
utterances for a wide range of SNR values with a comparison of different denoising methods are

listed in Table 4.2. The superiority of the proposed scheme can be well observed in this table.

Table 4.2: Comparison of the overall SNR improvements..

Output SNR (dB)
Input SNR
(dB) WP DCT Soft DCT Proposed EMD
(20) (22) (lopt) (Aopt)
(19)

0 4.86 5.69 6.55 7.13
5 8.86 9.76 10.15 10.75
10 12.36 13.74 13.93 14.48
15 15.45 17.65 18.03 18.43
25 20.82 25.53 26.43 26.85
30 23.16 29.52 30.68 31.33

It can be observed that for all SNR levels, the proposed method gives significantly better results.
Although SNR improvement is a good measure for quantifying performance, it has little
perceptual meaning and is therefore not a good measure for speech quality (24). Instead, the
average segmental SNR (ASSNR) is relatively a better measure. The results for the ASSNR are
listed in Table 4.3, which still proves the superiority of the proposed algorithm in all SNR values.
It can be observed that for all SNR levels, the proposed algorithm performs better.

The main advantage of the algorithm comes with the effective decomposition introduced by
EMD, which enables the higher frequency noise components to dominate the first IMFs helping
the algorithm to perform better in noise detection. Moreover, the novel frame categorization limit
helps the algorithm to perform significantly better than the DCT based soft-thresholding
algorithm in (19). The reason is that during frame categorization in (19) where the categorization

limit is set to noise variance as given in (3.2), there is a huge amount of noise components that
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remain within the signal dominant frames. The novel limit given in (4.5) —which is set to twice
the noise variance-, provides an efficient categorization of the frames enabling more noise
components to be eliminated. Another advantage of the algorithm comes with the optimum value

of 4 calculation, which provides the optimum thresholding for each IMF.

Table 4.3: Comparison of the average segmental SNR (ASSNR) improvements..

Output ASSNR (dB)
nput ASSNR Soft DCT P d EMD
(dB) WP DCT oft ropose
(19)
-4.111 -1.944 -0.636 -1.565 0.081
-1.341 0.797 1.747 1.039 2.512
2.079 3.623 4.687 4.254 5.529
5.758 6.427 7.852 7.712 8.767
13.837 11.723 14.799 15.307 15.877
18.002 13.780 18.382 19.222 19.542

In order to have a better idea about the perceptual quality of the enhanced speech signals, PESQ
has been used. Recently regarded as the best algorithm for estimation of the results of a
subjective test, PESQ returns a score between -0.5 and 4.5, with higher scores indicating better
quality. The results of the PESQ simulations can be observed in Table 4-4. It can be observed
that the proposed algorithm is still more effective in terms of perceptual quality than the other
methods. However, it is surprising to note that the DCT algorithm with hard thresholding in (22),
which thresholds all the DCT coefficients of the noisy speech, perform better in perceptual
quality at high SNR values, for 25 and 30dB. The reason is that the subjective evaluation of
speech signals at very high SNRs will not be as accurate as that of low SNRs. Since the signals
are very close to the clean speech, the subject cannot distinguish the insignificant speech
degradations. Therefore, the subject would prefer a speech signal with less noise components.
Since (22) aims to remove the noise signal at all frequency levels, the resultant signal -although
having more speech degradation- will have less noise components as a whole and is reasonable
to be preferred. That’s why for the perceptual quality, it is more reasonable to evaluate the PESQ

values of the lower SNR values where the enhanced speech signals can be better evaluated and
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where speech enhancement is more important to be applied. The superiority of the proposed
scheme can be well observed in Table 4.4. The effectiveness of the results for speech quality in
this table can be better understood when Table 4.2 is taken into consideration. For instance, the
enhanced signal of 5dB signal has an average SNR of 10.75dB and an average PESQ of 2.01.
This PESQ value is very close to that of 15dB input signal which has an average PESQ value of

2.06. The same discussion can be observed for other input SNRs.

Table 4.3: Comparison of the PESQ improvements..

PESQ
Input SNR
(dB) Input WP DCT Soft DCT Proposed
(20) (22) (lopt) EMD
(19) (Aopt)
0 1.14 1.24 1.41 1.46 1.59
5 1.37 1.54 1.78 1.79 2.01
10 1.70 1.93 2.18 2.16 2.31
15 2.06 2.30 2.57 2.48 2.58
25 2.84 2.85 3.26 3.18 3.20
30 3.23 3.06 3.66 3.55 3.57

One of the major advantages of the method is that it does not include any a priori knowledge of
the noise signal. However, due to the frame based thresholding which depends on the variance of
the signal, the algorithm is mainly applicable for stationary noise. Moreover, since EMD
decomposes the signal in terms of their frequency characteristics, the algorithm performs best for
white noise case for which high frequency noise components dominate the first IMFs. Although
the method performs improvement for colored noise types, the performance is the best for white
noise case. Therefore, the algorithm is mainly applicable for white noise, which is the most
common noise type. Another drawback of the algorithm is its time cost. Since a mathematical
representation is not yet given for EMD, the process takes long time. Therefore, the algorithm is
not applicable to real time speech processing. However, in order to reduce the computational cost,
it is possible to divide the noisy speech signal into frames and to apply EMD in each frame

instead of applying directly to the whole noisy speech.
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Chapter 5

DCT-EMD Based Hybrid Soft
Thresholding

5.1. Introduction

In this chapter, we introduce a novel speech enhancement method using soft thresholding with a
Discrete Cosine Transform (DCT) and Empirical Mode Decomposition (EMD) based hybrid
algorithm. As given in Chapter 3, soft thresholding for DCT-enhancement is a powerful method
for enhancing the noisy speech signal in a wide range of SNRs. However, due to the thresholding
criteria a significant amount of noise is left in the enhanced signal as can be observed in Figure
4.6(e), resulting in an irritating musical noise. EMD based soft thresholding is applied here to
remove the remaining noise components. Due to the frequency characteristics of the EMD, in
case of white noise, the remaining noise components are mainly centered in the lower order
IMFs. Therefore, it is possible to successfully identify and remove these noise components from
the first few IMFs. Since IMFs are time domain signals, the hybrid method provides a successful
spectral and time domain thresholding. This two stage thresholdinag efficiently removes the
noise components and significantly suppresses the musical noise problem. The degradation in the

speech signal is also highly reduced.
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5.2 DCT- EMD based Hybrid Soft Thresholding

The proposed method is based on applying the soft thresholding algorithm in two stages. In the
first stage, the soft thresholding for DCT enhancement algorithm is used as a pre-process. In the
second stage, we apply EMD soft thresholding algorithm to the enhanced signal of the first stage.
However, which IMFs to be thresholded should be carefully defined. Extra attention should also
be paid to the threshold values of each IMFs, because the signal has already been thresholded
once in the first stage and the IMFs differ in terms of noise and speech content. In order to

determine these points, our experimental analysis gave us the following conclusions:

e In case of a noisy speech signal contaminated with white noise, the first IMF mainly
consists of the noise components. However, this IMF also has a reasonable amount of
speech signal which should be kept. Therefore, this IMF should be thresholded with a
threshold vector that will keep the signal components.

e The second IMF is still mainly noise, but has more speech signal components compared
to the first IMF. Thus the threshold vector should be less compared to the first one.

e A significant amount of the noise components have already been removed, but there are
still major noise components in the third and fourth IMFs. Therefore, these IMFs should
also be thresholded but threshold values should be less compared to the first two IMFs.

e Since thresholding is already applied in the first stage and it is known that most of the
noise signals are within the first three IMFs, the lower IMFs are mainly the speech signal.

Thresholding will mostly degrade the speech. These IMFs should not be thresholded.

First EMD is applied to the enhanced speech and the first four IMFs are divided into 4ms frames,
each having 64 samples for 16 kHz sampling frequency. Depending on the average noise power
as in equation (4.5), each frame is characterized as either noise or signal dominant. Signal
dominant frames are not thresholded. In case of a noise dominant frame, the absolute values of

the samples are sorted in ascending order and the following thresholding strategy is followed:

~

X, = sign(Xy) [max {O, (IXkI — %)}] (5.1)

where threshold function mj is same as in equation (3.4) and i is the index of the IMF in concern.
Therefore, T—g is the weighted linear threshold function defined for the IMFs. A block diagram of

the proposed algorithm is illustrated in Figure 5.1.

48



amplitude frequency

Segmentation L. time L . time
in time DC T
Noisy Speech | E—
Segmentation

Sigamal Dominant Froquensy B in frequeni:}"
il oy ral
== NOTHRESHOLD! B o ) N
M ;I:I:r % <:. _EE Classification = -

+ Maise Doeminant Frequency Bins < l

) SOFT-THRESHOLDING{ 1
e < 1 | | =
=S==Sl.—— H ==

P Inverse DCT
Enhane I.I:I I'I’IIIII": Spﬂq:h

EMD

E

TOT eI T

I IME: | ﬂ
MNO THEESHOLLDY Signal Domminant Frames \/
M = (LI Classification
+ Noige Dominant Frames J ILEF:

Ml e T

ﬁ SOFT-THEESHOLDING!

YV

;- L . |
Denoised IMFi | IMF2 | IMFs ] {(Jrverall Enhanced
(D : Speech
L IMFa J

Figure 5.1: Block Diagram of the Proposed Hybrid DCT-EMD Soft Thresholding Algorithm.
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5.3 Experimental Results

To illustrate the effectiveness of the proposed hybrid algorithm, extensive computer simulations
were conducted with different 10 male and 10 female utterances, which were selected randomly
from TIMIT database. In order to observe the performance for a wide range of SNRs, weighted
white noise samples from NOISEX database were added to the clean speech signal to obtain the
noisy signals at different SNRs. The variance of the noise signal was estimated from the
speechless parts of the noisy speech signal.

Figure 5.2 illustrates the spectrogram of the clean, noisy at 10dB SNR and enhanced speech
signals for the female speech “she had your dark suit in greasy wash water all year” from TIMIT
database. Figure 5.3 gives the corresponding waveforms. It can be observed that the proposed
hybrid scheme is very effective in noise removal and extremely superior to other reported

methods. Figure 5.4 illustrates the waveforms of the results for 0dB SNR noisy mixture.

frequency, kHz

time, sec

Figure 5.2: The spectrogram of a) the clean speech, b) noisy mixture at 10 dB (white noise), and
enhanced speech with c) Wavelet packets thresholding (20), d) DCT hard thresholding (22),
e) DCT soft thresholding (Aopt), f) proposed hybrid method (Aopt)
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Figure 5.3: The waveform of a) the clean speech, b) noisy mixture at 10 dB (white noise), and enhanced
speech with ¢) Wavelet packets thresholding (20), d) DCT hard thresholding (22), ¢) DCT
soft thresholding (Lopt), f) proposed hybrid method (Aopt)
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Figure 5.4: The waveform of a) the clean speech, b) noisy mixture at 0 dB (white noise), and enhanced
speech with ¢) Wavelet packets thresholding (20), d) DCT hard thresholding (22), ¢) DCT
soft thresholding (Aopt), f) proposed hybrid method (Aopt)
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It can be observed that, with the first stage there is a reasonable enhancement in the noisy speech
signal. Although the noise components are successfully removed for a wide range of frequencies,
the remaining noise components in the enhanced signal can easily be observed. This noise signal
is randomly distributed in all frequency ranges, thus looks like white noise. As a result of
thresholding, the remaining noise components have less power compared to the noise signal in
the real mixture. This explains why careful attention should be paid to the threshold values in the
second stage. Applying the same linear threshold function as in the first stage, while removing
the noise signal, will degrade the speech signal dramatically. Therefore, it is significantly
important to define lower threshold values which will be enough to remove the noise signals in
the first four IMFs. As discussed before, since the IMFs differ in terms of noise content, the
linear threshold functions should also have different weights for each IMF. After extensive
simulations, we have defined the threshold functions as in equation (5.1). The first four IMFs of
the first stage enhanced signal were thresholded with these defined linear threshold functions.
With this second stage, we could manage to efficiently remove the noise components while
successfully keeping the speech signals. By this way, we not only have a significant
improvement in the SNR but also get rid of the irritating residual noise.

The average results of the computer simulation for 10 male and 10 female utterances for a wide
range of SNR values with a comparison of different denoising methods are listed in Table 5.1,

which proves the superiority of the proposed hybrid method.

Table 5.1: Comparison of the overall SNR improvements..

Output SNR (dB)
Input SNR
(dB) WP DCT Soft DCT Proposed EMD
(20) (22) (Aopt) (Aopt)
(19)

0 4.86 5.69 6.55 8.45
5 8.86 9.76 10.15 11.82
10 12.36 13.74 13.93 15.51
15 15.45 17.65 18.03 19.33
25 20.82 25.53 26.43 27.59
30 23.16 29.52 30.68 31.93
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As in the EMD based soft thresholding algorithm, the main disadvantage of the proposed method
is the computational cost due to the empirical calculation of the EMD. This is a major drawback
of all EMD based algorithms and many researchers are working on EMD in order to derive a
mathematical expression. Once a mathematical expression is given, EMD based algorithms will
be applicable to real time processes.

Similar to the EMD based soft thresholding, another disadvantage in this algorithm is that it is
not robust to different noise types. In the first stage, since all the frequency bins are processed
with a unique noise variance estimated in time domain, the method is mainly applicable to white
noise which has a flat spectrum. The method fails for other noise types that show different
spectral distribution within the frequency bins. Therefore, it is important to have a sub-band
approach where a specific noise variance is calculated for each frequency band. Here we propose

a sub-band approach for the first stage in order to provide robustness to different noise types.
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5.4 Sub-band DCT-EMD Hybrid Method

In order to make the hybrid algorithm robust to different noise types, some further modifications
are described in this section. The DCT soft-thresholding, first stage of the hybrid method, is
effective in removing the noise components while significantly keeping the original speech.
However, since all frequency bins are processed with a unique noise variance estimated in time
domain, the algorithm is mainly applicable to white noise which has a flat spectrum. The method
is not robust to other noise types which show different spectral distribution within the frequency
bins. For instance, in case of pink noise, the lower frequency bins will have higher noise variance.
The estimated noise variance will be around the mean value of the whole spectrum; thus it will
be less than the variance of the lower frequency bands. That’s why, the lower DCT frequency
bins will be always categorized as signal-dominant and will never be thresholded. Since most of
the noise is in these bands, the algorithm will dramatically fail. Therefore, it is important to have

a sub-band approach where a specific noise variance is calculated for each frequency band.

5.4.1. Sub-band Variance Approach for DCT Stage

Eight frequency sub-bands is adapted here. In order to find the noise variance of each sub-band,
a frame by frame variance calculation is introduced. As discussed in Chapter 3, the 32 ms frames
are divided into eight frequency bins. Therefore, each frequency bin represents a portion of a
sub-band. For instance, the first frequency bin in each frame is representing the first sub-band of
the whole signal which has the lowest frequency components. In order to find its noise variance,
the variance of the first frequency bins of each frame are calculated and stored in an array in
ascending order. Since the speechless parts will mostly have the lowest variance, its specific
noise variance can be estimated from these parts of the array. The same procedure is followed for
the other sub-bands. Figure 5.5 shows the sub-bands of a noisy speech signal corrupted with pink
noise and Figure 5.6 shows the sorted variance array of each frequency band. The noise variance
of each sub-band is estimated from their speechless parts as illustrated in Figure 5.6. Since the
signal is corrupted with pink noise, it can be observed that each band has a different noise
variance. The calculated noise variance of each band is used in the thresholding. With this sub-
band approach, each band will have an effective bin categorization. Moreover, in order to
provide better noise removal in both stages, for bin categorization, unlike the limit given in (3.2),

the novel limit in (4.5) which is set to twice the noise variance is used.
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Figure 5.5: Eight frequency bands of a speech signal corrupted with pink noise (10 dB SNR).
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Fig. 5.6: The sorted variance of the bins of each frequency band of the noisy speech signal.

5.4.2. EMD Stage

In the second stage of the hybrid algorithm given in section 5.2, thresholding is applied only to
the first four IMFs with the weighted threshold function in (5.1). This strategy is not applicable
to the noise types whose energy is mainly at lower frequencies, such as pink noise. Such noise
types will dominate in later IMFs. Therefore in order to provide robustness, all the IMFs are
thresholded here. Instead of the weighted function, the variance of each IMF of the enhanced
speech is calculated and thresholding is applied as in (4.6).
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5.4.3. Experimental Results

To illustrate the effectiveness of the proposed hybrid algorithm, extensive computer simulations
were conducted with 10 male and 10 female utterances sampled at 16 kHz, randomly selected
from TIMIT database. The clean speech samples were corrupted with weighted noise from
NOISEX database in order to obtain the noisy speech samples. To illustrate the robustness of the
proposed scheme to different noise types; white, pink and high frequency (HF) radio channel
noise samples have been used. For evaluating the performance of the method, overall and
average segmental SNR improvements as well as objective speech quality results were used. The
quality of the enhanced signals has been measured with the Perceptual Evaluation of Speech
Quality (PESQ) (23).

Figure 5.7 shows the waveforms and spectrograms of the clean and noisy speech at 10dB SNR
contaminated with white noise and the enhanced speech signals for the female speech “they will
take a wedding trip later”. Figure 5.8 and Figure 5.9 show the spectrograms and waveforms for
the pink noise and HF channel noise. The superiority and robustness of the proposed algorithm

can be well observed in these figures.
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Figure 5.7: The spectrogram and waveform of a) the clean speech, b) noisy mixture at 10 dB (white
noise), and enhanced speech with c) Wavelet packets thresholding (20), d) DCT hard
thresholding (22), ) DCT soft thresholding (Aopt), f) proposed hybrid method (Lopt)
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Figure 5.8: The waveform of a) the clean speech, b) noisy mixture at 10 dB (pink noise), and enhanced
speech with ¢) Wavelet packets thresholding (20), d) DCT hard thresholding (22), ¢) DCT
soft thresholding (Lopt), f) proposed hybrid method (Aopt)
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Figure 5.9: The waveform of a) the clean speech, b) noisy mixture at 10 dB (hfchannel noise), and
enhanced speech with ¢) Wavelet packets thresholding (20), d) DCT hard thresholding (22), ¢) DCT soft
thresholding (Aopt), f) proposed hybrid method (Aopt)
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With the sub-band approach, the proposed algorithm is robust to different noise types and always
performs significantly better than other reported techniques. The average results of the overall
SNR improvement, average segmental SNR (ASSNR) and the perceptual evaluation of speech
quality results (PESQ) for white noise are given in table 5.2.

Table 5.2: Comparison of a) overall SNR, b) Average Seg. SNR (ASSNR) and c¢) PESQ improvements

Output SNR (dB)
Input SNR
(dB) WP DCT Soft DCT Proposed EMD
(20) (22) (Aopt)(19) (Aopt)
4.86 5.69 6.55 7.91
5 8.86 9.76 10.15 11.22
10 12.36 13.74 13.93 14.98
15 15.45 17.65 18.03 18.87
25 20.82 25.53 26.43 27.18
30 23.16 29.52 30.68 31.51
Output ASSNR (dB)
Input ASSNR
(dB) WP DCT Soft DCT Proposed EMD
(20) (22) (Aopt)(19) (Aopt)
-4.111 -1.944 -0.636 -1.565 0.779
-1.341 0.797 1.747 1.039 3.166
2.079 3.623 4.687 4.254 6.078
5.758 6.427 7.852 7.712 9.294
13.837 11.723 14.799 15.307 16.394
18.002 13.780 18.382 19.222 19.998
PESQ
Input SNR
(dB) Input WP DCT Soft DCT | Proposed EMD
(20) (22) (Aopt)(19) (Aopt)
1.14 1.24 1.41 1.46 1.74
5 1.37 1.54 1.78 1.79 2.07
10 1.70 1.93 2.18 2.16 2.39
15 2.06 2.30 2.57 2.48 2.71
25 2.84 2.85 3.26 3.18 3.32
30 3.23 3.06 3.66 3.55 3.66
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The same results for the pink and HF channel noise are given in Table 5.3. Both tables prove the

superiority of our proposed hybrid algorithm.

Table 5.3: Comparison of overall SNR, Average Segmental SNR (ASSNR) and PESQ improvements of

different denoising methods for pink and hfchannel noise

Output SNR (dB)
Input SNR (dB) 0 5 10 15 25 30

WP[3] 2.57 7.19 11.66 1581 | 22.69 | 25.20

= DCT([8] 2.12 6.78 11.35 1581 | 24.58 | 2898
= S. DCT[4] 1.41 5.98 10.73 1551 | 2524 | 30.13
Proposed 451 8.27 12.41 1681 | 2601 @ 30.44

WP[3] 1.96 6.72 11.63 1645 | 2424 | 2647

. DCT(8] 3.59 7.84 11.88 1594 | 2411 | 2821
T S. DCT[4] 0.94 5.38 10.08 1492 | 2470 | 29.61
Proposed 4.92 8.95 12.96 1714 | 2621 | 30.84

Output ASSNR (dB)
In.ASSNR(dB) 4047 | -1124 | 2256 | 5959 | 14.059 | 18.188
WP[3] -2.983 0.017 3196 | 6373 | 12.354 | 14.904
= DCT(8] 3149 | -0.162 3057 | 6435 @ 13.695 | 17.526
= S. DCT[4] 3598 | -0.649 | 2704 | 6328 | 14.292 | 18.341
Proposed 1594 | 0927 3538 | 7.074 @ 15.088  18.834
In.ASSNR(dB) 4162 | -1.287 | 2079 | 5781 | 13.906 | 18.049
WP[3] 3574 | -0476 = 3.006 | 6.685 | 13441 @ 16.017
= DCT(8] 2683 | 0.218 3219 | 6411 | 13319 | 17.007
= S. DCT[4] 4171 | -1.349 1948 | 5599 | 13.603 | 17.725
Proposed -1.234 1.526 4416 | 7.671 @ 15342 | 19.239
PESQ
Input SNR (dB) 0 5 10 15 25 30

Input 1.33 1.68 2.06 2.43 3.22 3.61

9 WP[3] 1.64 2.04 2.38 2.66 3.15 3.32

Z DCT(8] 1.91 2.27 2.59 2.93 3.51 3.77

& S. DCT[4] 1.85 2.17 2.51 2.84 3.50 3.79

Proposed 1.93 2.29 2.62 2.95 3.55 3.83

Input 1.58 1.84 2.14 2.44 3.15 3.49

WP[3] 1.67 1.87 2.12 2.45 3.15 3.47

= DCT([8] 1.60 1.83 2.13 2.46 3.11 3.37

S. DCT[4] 1.49 1.62 1.84 2.14 2.94 3.32

Proposed 1.61 1.96 2.32 2.66 3.34 3.65
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In this chapter, we presented a hybrid speech enhancement method based on DCT and EMD. In
order to provide robustness to different noise types, a DCT soft-thresholding strategy with a sub-
band approach is given for the first stage of the algorithm. The effectiveness of the proposed
algorithm with the sub-band approach can be well observed. With this modification, the method
can be applied to any stationary type of noise.

The algorithm can be further improved by adapting an optimum value calculation for the number
of sub-bands. This can be achieved by analyzing the spectral distribution of the noise signal

which can be obtained from the speechless parts of the noisy speech.
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Chapter 6

Hard and Soft
Thresholding with EMD

6.1. Introduction

Hard and soft thresholding are commonly used techniques in speech enhancement. A significant
problem in such kinds of direct subtraction is the degradation of the speech signal. Therefore, it
is important to have a thresholding algorithm that will minimize the speech degradation while
removing a significant amount of the noise components. In the previous chapters, the given
proposed algorithms include a frame based soft thresholding algorithm which does not threshold
the frames that are identified as signal dominant.

In this chapter, a novel speech enhancement method based on applying a frame based joint hard
and soft thresholding algorithm to the intrinsic mode functions (IMFs) of the noisy speech is
given. With this strategy, hard thresholding is applied in the noise dominant frames. On the other
hand, a soft thresholding method is applied to the signal dominant frames. The given strategy is
effective in noise removal, however the degradation of the original speech signal is a major

drawback.
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6.2. Joint Hard and Soft Thresholding with EMD

The proposed method is based on applying a joint hard and soft thresholding algorithm to the
IMFs of the noisy speech. First of all, EMD is applied to the noisy signal and the IMFs are
obtained. Since each IMF has a different noise and speech energy distribution as can be observed,
it is essential to find the specific noise variance of each IMF in order to apply an effective
thresholding. This specific noise variance of each IMF is obtained from the speechless part as
discussed in Chapter 4.

The IMFs are segmented into 4 ms frames, each frame having 64 coefficients for a 16 kHz
sampling frequency. The frames of each IMF are categorized as either signal or noise dominant

depending on its average energy content. If for the i’th frame of an IMF,
= ,
—_ @ 2
- Z xO" =02, (6.1)
k=1

where a,fm denotes the noise variance of the m’th IMF, and X ,Ei) is the £’th coefficient of the i’th
frame of the m’th IMF, then this frame is categorized as signal dominant, otherwise as noise
dominant. Hard thresholding is applied in noise dominant frames. Therefore all the coefficients
in this frame are set to zero. In case of a signal dominant frame, the following soft thresholding

strategy as given in (22) is applied;

| sign(Xy) /[kaIZ—aT%m] Jf 1 Xl > 0y
X = (6.2)

k
X |X .
Ki Xl Jif Xl < o,

Onm

where X, denotes the thresholded coefficients. The enhanced speech is obtained by summing up

the thresholded IMFs.
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6.3. Experimental Results

To illustrate the effectiveness of the proposed algorithm, extensive computer simulations were
conducted with 10 male and 10 female utterances sampled at 16 kHz, randomly selected from
TIMIT database. The clean speech samples were corrupted with weighted white noise from
NOISEX database in order to obtain the noisy speech samples in a wide range of SNR values.
For evaluating the performance of the method, overall and average segmental SNR
improvements were used.

Figure 6.1 illustrates the spectrograms of the clean, noisy and enhanced speech signals by
different denoising algorithms for the female speech ‘She had your dark suit in greasy was water
all year’. Figure 6.2 shows the corresponding waveforms. It can be observed that the
spectrogram of the enhanced speech signal by the proposed algorithm is very close to that of the
clean speech signal and significantly better than those of the other methods. The noise

components are significantly removed from the noisy speech.
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Figure 6.1: Spectrogram of a) clean speech, b) noisy speech at 10dB SNR(white noise), enhanced speech
signals with c) wavelet thresholding, d)hard and soft thresholding with DCT, e) soft
thresholding with DCT, and f) proposed algorithm.
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Figure 6.2: Waveform of a) clean speech, b) noisy speech at 10dB SNR(white noise), enhanced speech

signals with c) wavelet thresholding, d)hard ans soft thresholding with DCT, e) soft

thresholding with DCT, and f) proposed algorithm.

The average SNR improvement results of the computer simulations for 10 male and 10 female

utterances are listed in Table 6.1. The superiority of the proposed scheme can be well observed

in this table. It can be observed that for all SNR levels, the proposed method gives significantly

better results. The results for the ASSNR are listed in Table 6.2, which still proves the

superiority of the proposed algorithm in all SNRs.

Table 6.1: Comparison of the overall SNR improvements.

Input

SNR
(dB)
0
5
10
15
25
30

wp
(20)
4.86
8.86
12.36
15.45
20.82
23.16

Output SNR (dB)
DCT Soft DCT
(22) (Aopt) (19)
5.69 6.55
9.76 10.15

13.74 13.93
17.65 18.03
25.53 26.43
29.52 30.68
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Proposed
EMD
7.03
10.33
14.14
18.06
26.58
30.96



Table 6.2: Comparison of the average segmental SNR (ASSNR) improvements.

Input Output ASSNR (dB)

ASSNR WP DCT Soft DCT Proposed
(dB) (20) (22) (Aopt) (19) EMD
-4.111 -1.944 | -0.636 -1.565 -0.001
-1.341 0.797 1.747 1.039 2.489
2.079 3.623 4.687 4.254 5.408
5.758 6.427 7.852 7.712 8.587
13.837 11.723 | 14.799 15.307 15.858
18.002 13.780 | 18.382 19.222 19.563

The proposed method is very effective in noise removal. However, since thresholding is also
applied to the signal dominant frames, there is a reasonable degradation in the speech
components which affects the speech quality. The soft thresholding strategy adapted to the signal

dominant frames can be skipped, if better speech quality is desired.
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Chapter 7

Conclusion

In this thesis, we have given EMD domain based thresholding algorithms for speech
enhancement. Due to the intensity of the work given here, the conclusion will be given for each

chapter;

Chapter 1: Speech enhancement aims at improving the perceptual quality and intelligibility of a
noisy speech signal mainly through noise reduction. Speech enhancement may be applied to a
mobile radio communication system, speech recognition system, robotics etc. Due to its
importance in today’s information technology, many methods have been developed for this
purpose. The reported algorithms can be mainly classified as parametric and non-parametric.
Parametric algorithms assume a model of the noise signal, whereas non-parametric approaches
just need an estimation of the spectrum. The proposed algorithms in this thesis are non-
parametric approach. Inside the parametric approaches, spectral subtraction and wavelet based
thresholding have been paid great attention. Hard and soft thresholding are widely used
thresholding strategies in those algorithms. The main problem in these methods is the residual

noise which is generally referred as musical noise.

Chapter 2: Recently been pioneered by Huang et. al., Empirical Mode Decomposition (EMD) is
a powerful data analysis method for non-linear and non-stationary signals. EMD decomposes

such signals into zero mean oscillating components, referred as the intrinsic mode functions
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(IMFs). IMFs give sharp and meaningful identifications of the instantaneous frequencies. This
makes EMD highly efficient for non-stationary signal analysis and superior to Fourier and
wavelet transforms. Soon after its introduction, EMD has been applied to a wide range of data

analysis, always proving its efficiency.

Speech enhancement is one of these fields that EMD has been applied successfully. Since the
extraction of IMFs relies on subtracting the highest oscillating components from the data with a
step by step process, referred as the sifting process, the high frequency components dominate in
the first IMFs. Therefore, the lower the index of the IMF, the higher its frequency content is.
IMFs may have frequency overlaps, however at any time instant the instantaneous frequencies
defined by each IMF is different, the lower order IMF having the higher instantaneous frequency.
Therefore, although the IMFs are in time domain, they have spectral difference at time instances.
Due to the frequency characteristics of the IMFs, the noise and speech components of a noisy
speech dominate in different IMFs. A thresholding algorithm can be applied to the IMFs of the

noisy speech to remove the noise components.

Chapter 3 A soft thresholding algorithm for DCT domain proposed by (19) was given here. The
signal is divided into frequency bins in the spectral domain, and each bin is categorized as signal
or noise dominant depending on the average noise power associated with that bin. The noise
dominant bins are thresholded with a linear threshold vector instead of a constant value as in the
traditional noise level subtraction rules. On the other hand, signal dominant bins are kept as they
are. Since the signal dominant bins are never thresholded, the algorithm is applicable to a wide
range of SNR values. The linear thresholding provides an effective noise removal, hence an

effective increase in the SNR.

Chapter 4 An EMD domain soft thresholding method was proposed here. The soft thresholding
strategy in Chapter 3 is adapted to the IMFs of the noisy speech with some modifications. Since
the IMFs differ in terms of speech and noise energy, noise variance is calculated for each IMF.
Each IMF is divided into time frames and each frame is categorized as signal or noise dominant
frame similar to the DCT soft thresholding. The signal dominant bins are not thresholded,

whereas the noise dominant bins are thresholded with a linear threshold function.
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Due to the effective decomposition introduced by EMD and some modified criteria in the
thresholding algorithm, the proposed method gives significantly better results than the DCT
domain soft thresholding algorithm and other recently reported techniques. The major drawback
of the algorithm is that it is mainly applicable to white noise, since white noise dominates in the
first few IMFs and can be successfully suppressed with the proposed method. Another
disadvantage of the algorithm comes form the computational cost of EMD. Since EMD does not
have a mathematical expression, this is a major problem in all EMD based algorithms. Therefore
the algorithm may not be used in real time processes. However, many researchers are working to
derive a theoretical definition of EMD, which if achieved will let the EMD based algorithms be

applicable to real time processes.

Chapter 5 A hybrid DCT and EMD based soft thresholding method was proposed here. The
DCT soft thresholding strategy in Chapter 3 is used as a pre-process for noise reduction in
spectral domain. The remaining noise components of the enhanced speech are denoised by EMD
based soft thresholding in the second stage. In order to make the hybrid algorithm robust to
different noise types, a sub-band variance approach is introduced for the DCT domain
thresholding. With this sub-band approach, the algorithm is robust to different noise types and

significantly performs better than other reported methods.

Chapter 6 A joint hard and soft thresholding criteria was adapted to the IMFs of the noisy speech
signal. Similar to the EMD based thresholding, the IMFs of the noisy speech is divided into short
time frames and each frame is categorized as signal or noise dominant. Hard thresholding is
applied in noise dominant frames and a soft thresholding strategy is adapted in the signal
dominant frames. Despite giving better results than other methods and performing significantly
well in noise removal, the algorithm results in some speech degradation. The soft thresholding

strategy in the signal dominant frames may be skipped if better speech quality is desired.
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