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Objective and abstract
The motivation for spectral verification of atmospheric meteorological models lies in the need 
to assess model skills in capturing meteorological  phenomena on a variety of spatial  and 
temporal scales. These skills might not show up properly in conventional statistical validation 
metrics  such  as  root  mean  square  error  and  mean  absolute  error,  since  small  timing 
inaccuracies in the simulations  can result in poor model performance scores due to phase 
errors in atmospheric phenomena that were otherwise well captured by the model. 

In this work, we aim to verify the shorter time scales found in the Multi Scheme Ensemble 
Prediction System (MSEPS). The variability in the forecasts and observations will be directly 
verified using the Ensemble Empirical Mode Decomposition (EEMD). The EEMD represents a 
significant development on the earlier Empirical Mode Decomposition, since timescales are 
not  mixed  between  the  components.  This  allows  direct  comparison  of  the  modes 
(components) of the forecast and observed time series. Therefore, we can see directly the 
scales at which the model starts to produce realistic fluctuations.  

The methodology is developed using both a 2 month segment of the continuous 'warm run' of 
the MSEPS, and using a 20 day period of individual 24 hour forecasts. The key results are that 
the model starts to produce variance with a realistic amplitude for time scales longer than 
about 2-3 hours, that  some faster scale variability events are captured by the model, but that 
in general, realistic variability is not found in the model on time scales shorter than about 2-3 
hours.

Introduction
The development of suitable verification methodologies is essential for the assessment and 
comparison of mesoscale models. As discussed in Vincent et al. (2009), it is impossible for a 
mesoscale model to capture the exact timing of the peaks and troughs of wind fluctuations on 
time scales of around an hour or less. A successful mesoscale forecast is one that captures 
the  statistics  of  the  wind  speed  variability  (that  is,  the  amplitude  and  period  of  the 
fluctuations), rather than one that minimises a global verification score such as RMSE or bias. 
This is in contrast to large scale variability (such as the synoptic or diurnal cycles), where the 
phase as well as the amplitude are important aspects of a good forecast.

Previous work in this project used the Hilbert-Huang transform to separate scales in MSEPS 
forecasts, and verify the model performance over different time scales (Vincent et al. 2009). It 
was found that certain MSEPS members consistently scored well on faster time scales, while 
other MSEPS members were more effective on slower time scales. The relative performance 
of all 75 ensemble members on a range of different time scales was presented. This previous 
study used a special ‘warm run’ version of the MSEPS model, which was forced with the large 
scale weather patterns from the boundaries, but which was not reinitialized with a new set of 
initial conditions every six hours. 



During the past two years, there have been significant developments in the Hilbert Huang 
Transform methodology which address some of  its previous limitations and which potentially 
make  it  a  simpler  and  more  useful  tool  for  mesoscale  verification.  In  this  report,  the 
limitations of the methodology in Vincent et al(2009) will be discussed, the new developments 
to the Hilbert Huang Transform will  be described. Preliminary results of  applying the new 
methodology will be presented. 

Section 1: The Ensemble Empirical Mode Decomposition
The  Hilbert  Huang  transform  is  a  two  step  process  for  frequency-time  analysis  of  non-
stationary  time series.  In  its  original  form (Huang et  al.  1998),  the  time series  was  first 
decomposed into a set of  components  (called Intrinsic  Mode Functions or  IMFs)  using an 
empirical  sifting  technique,  and  then each  component  was  transformed  using  the  Hilbert 
Transform  to  find  its  instantaneous  frequencies  and  amplitudes.  There  were  two  serious 
limitations of the empirical sifting technique, which was based on recursively subtracting the 
mean of the time series. Firstly, the decomposition was not unique because it depended on 
the choice of convergence criteria. Secondly, a signal of a particular frequency could be split 
between more than one IMF, a problem known as ‘mode mixing’. This meant that it was not 
possible to attach a physical interpretation to a single IMF. 

These two limitations were addressed in Wu and Huang (2009) with the development of the 
Ensemble  Empirical  Mode  Decomposition  (EEMD).  In  the  EEMD,  the  time  series  is  pre-
whitened N times with N different realisations of white noise. Each of the N pre-whitened 
versions of the time series is decomposed using the original empirical sifting technique, and 
the  N  realisations  of  each  IMF  are  then  averaged  to  find  the  ‘true’  decomposition.  The 
development addresses both the problems of uniqueness and mode-mixing. Conceptually, the 
original decomposition technique and the EEMD are compared in figures 1 and 2.

For verification purposes, the important aspect of the updated methodology is that it may be 
possible to directly compare the IMFs from the forecast with the IMFs from the model. This 
relies on the assumption that since all frequencies should be represented in the pre-whitened 

Figure 2: The new methodology for arriving at a unique decomposition 
of the time series, consisting of pre-whitening, decomposition and 
averaging. 

Decomposition 
of N time series

Averaging of IMFs to 
create the 'true', or 
'unique' decomposition

Pre-whitening: N 
different realisations of 
white noise are added to 
the time series

Figure 1: Original methodology for 
decomposing the time series



time series, there should be no missing frequencies in the IMFs. In other words, if a feature 
appears in a particular IMF in the observations, then it should appear in exactly the same IMF 
in the forecast, allowing for direct comparison of IMFs. It may be possible to abandon the need 
to calculate instantaneous frequencies and amplitudes in the IMFs using the Hilbert transform, 
and instead directly compare IMFs. Whether or not it is in fact possible to directly compare the 
IMFs from the forecast with the IMFs from the model will be discussed further below. 

Section 2: Application of the EEMD to the MSEPS warm run
The EEMD was applied to a 61 day segment for two ensemble members of the MSEPS warm 
run, which is described in Vincent et al. (2009). The 61 days corresponded to the months of 
February and March 2004. The forecast and observed time series are shown in figure 3. By 
eye, there are clearly periods of large amplitude wind variability in the observations that are 
not captured by the model.  For example, the wind  behaviour between days 50 and 60 is 
poorly forecast in terms of the wind variability.

Figure 3: Observed (blue) and forecast (red) time series for the 61 day test 
period.

The forecast time series had a time step close to 6 minutes. They were interpolated to a 
resolution of exactly 6 minutes for consistency with observations which were also interpolated 
to 6 minutes. The two EEMD parameters that need to be chosen for such a decomposition are 
the ratio of the standard deviation of the added white noise to that of the original time series, 
and the number of pre-whitened time series that should be created to form the ‘average’ 
decomposition. In this case, the two parameters were chosen to be 0.15 and 40 respectively. 
These two parameter choices were somewhat arbitrary. The decomposition of the  forecast 
and observed time series are given in figure 4. 

Inspection of the decomposed time series (figure 4) shows that the technique is much more 
satisfactory than the methodology used in previous studies. The IMFs can now be directly 
compared,  and it  seems unnecessary to transfer them to frequency space via the Hilbert 
transform. It can be immediately seen that the model captures very little of the variance in 
the first four IMFs, and that for the last four IMFs the fluctuations in the model are nearly 
perfect. For IMFs 5 and 6, the model captures some of the variability. In particular, the large 



fluctuations on day 80 appear to be captured by the model. The right hand plot in figure 4 is 
zoomed in around the event on day 80.

 

Figure 4: The first 10 IMFs for the observed time series (RED) and the first two MSEPS ensemble 
members (BLUE and GREEN). Left: The 61 day study period. Right: 10 days surrounding the 
variability event on day 80.



The average periods in each IMF for the observations and for the two ensemble members are 
tabulated in table 1. It is seen that they are nearly identical, which suggests that directly 
comparing the IMFs is indeed reasonable for at least the first 9 IMFs.

IMF number Period  of  observed 
IMFs (hours)

Period  of  forecast 
IMFs  –  member  1 
(hours)

Period  of  forecast 
IMFs  –  member  2 
(hours)

1 0.15 0.14 0.14

2 0.33 0.29 0.29

3 0.68 0.61 0.60

4 1.4 1.3 1.3

5 3.1 2.9 2.9

6 7.1 7.0 7.2

7 18 18 19

8 38 40 42

9 86 81 92

10 133 183 183

Table 1: Average periods in the first 10 IMFs for the observed time series and the first two ensemble 
members.

The average periods of the forecast and observed IMFs are shown on a log-log axis in figure 5. 
It  is seen that they agree very well  for the first 9 IMFs. Further, it can be noted that the 
periods are approximately evenly spaced on a log-log axis, which agrees with the results of 
Wu and Huang (2004) and Flandrin et al. (2004).                                               

Figure 5: The mean period of the first 9 IMFs in the 
observations and in the MSEPS ensemble member 1, 
on a log-log axis. The periods of the IMFs are nearly 
identical, which suggests that the amplitudes can be 
directly compared.

Since the IMFs in the forecasts and the observations seem to be capturing nearly identical 
sets of frequencies, it is reasonable to use them as a direct verification tool. In figure 6, the 
average periods of  the forecast  and observed IMFs are shown. The average periods were 
calculated as the average of the absolute value of the maxima and minima of the IMFs. The 



plot shows that for the first 5 IMFs (time scales shorter than 3 hours), the amplitudes are 
dramatically suppressed. For IMFs 6 and 7 (time scales 7 and 18 hours), the amplitudes of 
the forecasts  start  to  improve,  and for  IMFs 8 and 9 (time scales 40 and 80 hours),  the 
forecast amplitudes are nearly correct. 

Figure 6: The average amplitude for each of the first 9 
IMFs for the observations and the first two MSEPS 
ensemble members. 

Section 3: Application of the EEMD to individual 24 hour forecasts
The analysis in section 2 related to a continuous 3 month period of the warm run experiment. 
This was ideal for EEMD analysis because it did not have any gaps in it and represented a 
wide range of scales. However, it is also of interest to analyse individual 24 hour forecasts, 
because in many cases this is how forecasts are actually provided to end users. The EEMD 
was applied to forecasts from once per day in a 20 day period in January 2004.

The  main  frequencies  that  appeared  in  each  IMF  were  analysed  by  taking  the  Fourier 
transforms of the IMFs. The corresponding observations were analysed in the same manner, 
and compared with the forecasts  for all  75 ensemble members.  The days were validated 
individually,  and  the  time  scales  that  existed  in  the  observed  IMFs  on  each  day  were 
compared with the timescales reproduced by MSEPS. That is, what were the dominant time 
scales on each day, and how often were those dominant time scales represented in MSEPS?  

To quantify the number of times that the correct dominant frequencies were represented in 
MSEPS, a score parameter was calculated for each day, for each member and for each time 
scale. The scores were then averaged for each time scale. 

The forecasts and observations were decomposed in a two step procedure:

Step 1

The  time  series  from  both  observation  and  simulations  were  decomposed  into  a  set  of 
intrinsic mode functions (IMFs) using the ensemble empirical mode decomposition technique. 
The first  IMF extracts  the component  of  the fastest  oscillations from the time series,  the 
second  the  second  fastest  oscillation  and  so  forth.  The  updated  EEMD  methodology  as 
described above was used in all the decompositions.



Step 2

The  largest  amplitude  and  the  associated  period  for  each  IMF  was  extracted  for  each 
ensemble member and the observations for each of the 20 days in the study period using the 
fast Fourier transform. 

Results and Discussion

The periods from the FFT analysis were sorted into time scale bins following Vincent et al. 
(2009), as given in table 2. It should be pointed out that timescale 6 is not well represented in 
the time series as only 1 single cycle is possible within the simulation period. The timescales 5 
and 6 are included only for completeness and comparison with earlier work. In agreement 
with the results in section 2, it is seen that the short time scales are found as the dominant 
time scale  in  the model  much less frequently that  in  the model.  These results,  however, 
should be treated with caution because of the shortness of the time series, and the fact that 
the fast Fourier transform will not necessarily identify the most important time scale in a non-
stationary time series.

Time scale 1 24-180 minutes
Time scale 2 24-120 minutes
Time scale 3 60-120 minutes
Time scale 4 120-240 minutes
Time scale 5 240-320 minutes
Time Scale 6 180-600 minutes

Table 2: Time scales studied in the 24 hour forecasts

Figure 7: The number of times dominant frequencies with the time scale 1-6 
occurred in the observations (blue bar) and the mean number of times the 
same scale showed up in the ensemble members (brown bar).

Figure 7 shows the number of times that a significant peak in the oscillations is observed in 
the observed and forecast IMFs. For example, on the time scale of 24-180 minutes, significant 
peaks in the spectra of the observed IMFs are seen in 48 times (i.e. these time scales appear 
48 times in the combined IMFs of the 20 days), while significant peaks were only found, on 
average, in 12 of the 20 forecasts. Each forecast has 8 IMF and can therefore have more than 
one significant peak within a the same time interval. Figure 7 also shows that in many of the 
24 hour forecasts periods, there were significant fluctuations in the observed time series that 
were not actually captured by the model. If the forecast IMFs did have a spectral peak in the 
right place, this analysis only shows that the fluctuations exist at some time within the 24 
hour period; it does not assess the timing of the fluctuations. Although not shown here, some 
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members of the MSEPs captured the shorter oscillations more frequent which supports the 
findings from Vincent et al (2009).

Validation scores.

Since it was shown in section 2 that the modelled and forecast IMFs show nearly identical 
periods, an attempt was made to quantify how well the 24 hour MSEPS forecasts performed 
within each time scale bin.  The validation score was the different between the dominant 
periods in the observation and the forecast, scaled by the dominant period of the observation 
and is given in equation 1. This score shows how closely the period of the model matched that 
of the observations for the most important oscillations. 

Error relative=
periodobservation− period forecast

periodobservation
                                       Equation (1)

Each MSEPs member may have numerous hits within a time scale and the members relative 
errors  are  therefore  averaged  together.  In  the  averaging  procedure  only  relative  error 
between -1 and 1 are consider as larger errors are consider to be artifacts of the procedure. 
The relative error for all the MSEPS members on time scale 1-4 are shown below in figure 8. 

 

Figure 8: Average squared MSEPS errors for the 20 day period for each time scale bin

In figure 9, the errors shown in figure 8 are averaged for all ensemble members. It is seen 
that the relative errors decrease for time scales longer than 2 hours, which supprts the overall 
picture that emerges from the analysis in sections 2 and 3. That is, that below about 2-3 
hours, the fluctuations in the model are mostly random fluctuations that do not have much 
bearing on the physical fluctuations observed in the atmosphere. For time scales longer than 
this,  the timing and amplitude of  the fluctuations both begin to  show increasing skill.  As 
before, care should be taken when interpreting the last time scale, since it is too long to be 
properly represented in a 24 hour forecast. 
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Figure 9: Average relative error (as defined in equation 1) for all 
MSEPS members in each time scale bin.

Section 4: Case study of a 24 hour forecast of a day with regular 
fluctuations in wind speed

We have already shown that the variance in the model is greatly suppressed for the time 
scales of less than about 3 hours, but we wish to investigate whether any realistic physical 
signals are captured by the model on these scales. To investigate this, a case study day was 
chosen when regular  and significant  fluctuations  with  a time scale  of  about  1  hour  were 
observed in the meteorological mast observations from Horns Rev. 

The comparison is done for time scales in the 1-2 hour range on a day that hosts interesting 
observed fluctuations on these time scales. The day is 11 of January 2004, where warm air is 
advected  over  a  relatively  cold  North  Sea.  This  may  have  generated  a  stable  stratified 
boundary layer and the fluctuations could be associated with the stable stratification.

The upper panels in figure 10 show the observed time series for the selected day. It is seen 
that there are regular fluctuations in the wind speed with a period of around hour throughout 
this day.  The first 10 members from the MSEPS ensemble are also shown. It is seen that the 
members capture only a very small proportion of the mesoscale variability. Therefore, it is not 
necessarily reasonable to be searching for mesoscale variability in a model of horizontal grid 
spacing 5 km. In the lower panels of figure 10, the observed time series is shown together 
with the third and fourth IMFs from the decomposed time series. These two IMFs contain the 
fluctuations with time scale close to 1 hour. 

Even though the MSEPS ensemble doesn’t capture the fluctuations explicitly, there may be 
some dampened mesoscale  variability  signal  that  can be uncovered  by decomposing  the 
forecast time series, and this will be explored in the following sections. 
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Figure 10: Observed and simulated time series for 00-12 hours (upper two panels) and 
12-24 hours (lower two panels). For each 12 hour segment, the upper plot shows the 
observed time series and the first 10 ensemble members, while the lower plot shows 
the third and fourth IMFs from the observed time series, which contain most of the 
variability signal.

The observed IMFs were then compared with the simulated IMFs. The third and fourth IMFs 
from the observed time series are shown in figure 11, together with the third and fourth IMFs 
from two of the MSEPS ensemble members. The blue arrows indicate three distinct features in 
the observed IMFs – at hours 1-3 and 14-16 in IMF 4, and at hours 8-10 in IMF3. We can 
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indeed see there are analogous features (albeit damped, note the different axis scaling for 
forecast and observed IMFs) in the forecast IMFs, but it may just be by chance. Overall, the 
variability in the MSEPS model is greatly damped compared with that in the observations. 

If  the features compared in this way are related to the same atmospheric behavior,  then 
direct spectral comparison therefore is meaningful. In this case, the model performance can 
be considered ‘good’  when the feature is  both in  the observation and in  the simulations 
occurring  within  a  reasonable  small  time interval.  However,  the  primary  result  from this 
analysis is that in this case, the model does not really capture fluctuations on time scales as 
short as 1-2 hours.  
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Figure 11: Forecast and observed IMFs 3 and 4



Conclusions and final remarks  
The MSEPS ensemble starts to predict variance with realistic amplitudes for time scales longer 
than about 3 hours. The variance in the model for time scales shorter than 2-3 hours is greatly 
damped compared to what is seen in observations. This is not a failure or shortcoming of the 
model, but simply relates to the fact that a mesoscale model of resolution 5 km should not be 
expected to contain the same amount of variance as the real atmosphere on these scales. For 
longer timescales, the model appeared to capture the amplitude and phase of the significant 
fluctuations very well in the 61 day test period that was studied here.

The ensemble empirical mode decomposition was an interesting way to analyse the variance 
in the MSEPS model. In particular, analysis of the warm run experiments clearly differentiated 
the poorly forecast timescales from the well  forecast time scales. The ensemble empirical 
mode decomposition, which was first reported in the literature during the past year, seems to 
be  a  much  more  promising  model  verification  tool  than  the  original  empirical  model 
decomposition and Hilbert transform.

The ensemble empirical mode decomposition was also applied to a 20 day period of individual 
24 hour forecasts. We tried to quantify the periods that were well captured in these forecasts, 
and to provide a case study that illustrated the performance of the model. These experiments 
were partially successful, but it was difficult to study such short time series.

Spectral verification of mesoscale models is still a new and under-developed area of model 
validation.  Although  it  was  not  possible  for  us  to  produce  a  finished  or  operational-style 
verification product, we believe that we have gained extra insight into the methodology for 
scale  based  verification.  Future  work  on  these  areas  involved  further  automation  and 
quantification of the results presented here, such that robust verification statistics could be 
developed for scale based verification. Scale based verification remains an imperative aspect 
of  mesoscale  model  development,  because  traditional  verification  scores  cannot  reward 
forecasts that show high skill in mesoscale variance.
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