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ABSTRACT 

Knowledge of the tempo of a piece of music is not only 
a very important part of any music transcription system 
but has many uses on its own, from automatic 
segmentation to video synchronisation. The purpose of 
this paper is to investigate the suitability of Empirical 
Mode Decomposition (EMD) when used for this task. It 
has already found uses in many areas such as speech 
processing and biomedical applications where the core 
physical processes involved in creating the data are of 
importance. It is for this reason that EMD followed by 
Hilbert Spectrum calculation was applied to meter 
analysis. 
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1. INTRODUCTION 

The term meter is used to describe the different metrical 
levels of a piece of music which are hierarchical in 
nature. The GTTM [1] states that western music 
conforms to a metrical grid where beats are equally 
spaced and the period of each metrical level is an 
integer multiple of the level above it (i.e. the level faster 
than it.) This is normally either by a factor of 2 or 3 
depending on the time signature of the music in 
question. The 3 main metrical levels have been termed, 
(from lowest frequency to highest), the measure, tactus 
or tempo and tatum [3, 4]. In this paper a novel 
technique is presented which seeks to find multiple 
levels of the meter of a piece of music. Section 2 gives a 
brief review of related work in this area and the 
theoretical background of EMD and the Hilbert 
Transform is given in section 3. A description of the 
algorithm used is given in section 4 followed by the 
results and conclusion. 
 

2. RELATED WORK 

 Tempo induction for musical audio is a well researched 
area with the majority of the earlier studies based upon 
analysis of symbolic data such as MIDI or manually 
parsed scores containing onset times and durations [2]. 
More recently systems tend to have either the raw or 
compressed audio as the input. This compression can 
take many forms from decimated sub-band envelopes as 
in Scheirer and Klapuri [4] to more complex front-ends 
which seek to extract phenomenal accents by detection 
of sudden changes in timbre, dynamics or harmonic 

structure. In [3, 4] an overview of tempo induction 
systems is presented while [5] gives a comparison of 
onset detection functions used in music analysis. A 
method based upon inspection of Inter Onset Intervals 
(IOI) [4, 6] has also been reported. These are calculated 
between pairs of onsets within a certain time length and 
sometimes weighted based on the onsets’ prominence. 
 

3. EMPIRICAL MODE DECOMPOSITION 

EMD was originally proposed in order to allow for the 
subsequent application of the Hilbert Transform to a data 
set, which has been termed the Hilbert-Huang Transform 
[7]. It seeks to decompose any signal into a set of 
completely data-adaptive basis functions called Intrinsic 
Mode Functions (IMFs) [7]. EMD has no a-priori 
defined basis, unlike the Fourier and wavelet transforms, 
and therefore can deal easily with both non-linear and 
non-stationary data. The foundation of the theory is that 
any data set essentially comprises of the superimposition 
of a finite number of different, simple oscillatory modes, 
termed IMFs. These IMFs have the same number of 
zero-crossings as extrema (or only differing by at most 
one) and are also symmetric with respect to the ‘local 
mean’ [7]. These restrictions are in place so as to 
facilitate robust instantaneous frequency and envelope 
calculation as will be shown in section 3.2. 
Despite widespread use, EMD does not admit an 
analytic formulation and is essentially defined by its 
algorithm [7]. Given a real signal ( )x t , EMD is applied 
as follows to obtain a set of IMFs [8]: 

1. Identify all the extrema of ( )x t . 
2. Interpolate between successive maxima and 

minima, respectively, to obtain upper and lower 
envelopes. 

3. Calculate the local mean ( )m t between the 
envelopes. 

4. Extract the detail, ( ) ( ) ( )d t x t m t! " . 
5. Detail then becomes extracted IMF. Iterate on 

residual ( )m t . 
In practice a sifting process has to be implemented 
whereby steps one to four are repeated until the detail 
can be considered zero-mean and conforms to the IMF 
restrictions. The detail then becomes the first IMF and is  
 subtracted from the original data and the process begins 
again.. Therefore the signal ( )x t  can be expressed as: 
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where I is the number of IMFs extracted and ( )Im t is the 
final residual. There are a number of considerations to 
be taken into account when implementing EMD relating 
to the number of siftings, stopping criteria and envelope 
interpolation; details of which can be found in [7, 8]. 
  

3.1. Ensemble EMD 
 
Fig 1.(a). shows a data set consisting of a low frequency 
wave and two high frequency bursts. Fig 1(b)-1(e) 
depict the IMFs extracted from data which have no 
guarantee of being globally orthogonal, although have 
been shown to be locally orthogonal in [7, 8]. This 
results in what is termed ‘mode mixing’, where different 
modes of oscillation appear in a single IMF. The high 
frequency and low frequency components of the data 
clearly belong to different modes of oscillation but have 
been spread over the all IMFs extracted.  Mode mixing 
not only causes serious aliasing in any subsequent 
Hilbert Spectrum, but can cause individual IMFs to be 
devoid of physical meaning [7, 9]. 
To remedy this Huang [9] advocated Ensemble 
Empirical Mode Decomposition (EEMD), in which an 
ensemble mean is taken of a number of IMFs extracted 
from multiple applications of EMD to the original data 
with the addition of different white noise series each 
time. It was shown in [10] that EMD acts as an adaptive 
dyadic filter bank when applied to white noise and 
therefore the principle of EEMD is relatively straight 
forward. The added white noise will occupy the entire 
time frequency space and the parts of the signal will be 
automatically projected onto proper scales of reference 
established by the white noise, thus eliminating mode 
mixing. The individual IMFs are, of course, very noisy 
but the ensemble mean of a number of corresponding 
IMFs will leave only the signal, as a collection of white 
noise cancels each other out in a time space ensemble 
mean [9]. As the number of ensemble members, N , 
increases the effect of the noise decreases as governed 
by the well established rule :  

n N
%% !       (2) 

where %  is the amplitude of the added noise and n%  is 
the standard deviation of the original data and the 
summation of the IMFs. Fig 2(b)-2(e) show the 
resulting IMFs with EEMD applied to the same signal 
as in fig.1.(a) with 50N ! and 0.1% ! times that of the 
original data. The two separate components now reside 
in two different IMFs as compared to being shared over 
all the IMFs as in fig. 1(b)-1(e). 
 
 

3.2.  Hilbert Transform 

The Hilbert Transform of ( )x t  may be written as: 
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where the principle value of the integral is used. Given 
( )x t and ( )y t , a complex analytic signal ( )z t  can be 

constructed: 
( )( ) ( ) ( ) ( ) j tz t x t jy t E t e ,! # !                                      (4) 

 
The instantaneous frequency ( )t- can be calculated as 
the first order difference of the unwrapped phase ( )u t, : 

( ) ( )u
dt t
dt

- ,! "                  (5) 

 
However, this does not give sensible instantaneous 
frequency for an arbitrary signal [7, 8, 9] as a few 
restrictions have to be applied to the data. The real part 
of its Fourier transform may only have positive 
frequency (i.e. no DC component.) This applies locally, 
so any ‘riding waves’ and/or asymmetric envelopes can 
be considered as a DC offset and have to be eliminated. 
EMD was devised for this reason as it produces IMFs 
which are zero mean locally and therefore admit to 
meaningful instantaneous frequency calculation. 

4. E.E.M.D. TEMPO ESTIMATION 

In our novel algorithm initially the signal undergoes 
some pre-processing to reduce the data size and detect 
clearly musical onsets. EEMD is then applied to reveal 
the modes of oscillation, which are then used to estimate 
the meter period after undergoing frequency analysis 
and matching to a harmonic template. Pulse trains 
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Figure 1 (a).300Hz sine wave 
with intermittent bursts of 
smaller amplitude 3000Hz 
sine wave. (b-e) IMFs 
extracted by EMD in 
ascending order. Mode 
mixing clearly visible. 

Figure 2. (a).300Hz sine 
wave with intermittent bursts 
of smaller amplitude 3000Hz 
sine wave. (b-e) IMFs 
extracted by EEMD in 
ascending order. Mode 
mixing is clearly eliminated. 



  
 

 

corresponding to the tactus and measure are produced 
and the correct phases are calculated.    

4.1. Pre-processing  

The input music sampled at 44.1 KHz undergoes a 
Short-Time Fourier Transform (STFT) with window 
size of 1024 samples and a 50% hop. This reduces the 
sample rate to around 86Hz which is more than enough 
to detect multiple consecutive rapidly occurring onsets. 
The complex domain onset detection function [11] is 
calculated as it gives relatively sharp peaks even for 
sounds with no major energy increase at the onset due 
to its inclusion of a phase deviation term. This gives a 
measure of the non-stationarity of the signal in each 
frame of the STFT by calculating the deviation of each 
frequency bins’ energy and phase from a prediction 
made using the previous frames. 
The output of this detection function is summed with an 
energy based detection function as given in [11]. This 
energy based detection function is simply the sum of the 
squares of the magnitudes in each frequency bin. The 
energy based detection function is equivalent to the 
signal’s envelope and so carries the majority of the 
rhythmic fluctuations in the original music. The 
summation of the two detection functions is important 
as it allows for the inclusion of softer onsets which do 
not show up as clearly if energy the alone is used.  

4.2. EEMD 

The combined detection function then undergoes 
EEMD with an ensemble of, N=100, and white noise 
amplitude of 0.1 times that of the data as recommended 
in [9].  
A Hilbert transform is taken of each IMF in turn and the 
instantaneous frequencies and envelopes are used to 
form a Hilbert Spectrum, a 2-D time frequency 
distribution similar to an STFT but with theoretically 
infinite frequency and time resolution. However, this 
has to be quantized into ‘frequency bins’, and 10000 
bins were chosen to represent instantaneous frequencies 
from 0 to around 8.6 Hz, giving a resolution of 8.6 x 10-

4Hz. The instantaneous frequencies of the different 
metrical levels are apparent from the Hilbert Spectrum 
although they can sometimes be erratic due to 
discontinuities in the IMFs. A harmonic matching 
method was devised to derive the tactus and measure 
period from the Hilbert Spectrum of the detection 
function. 

4.3.  Harmonic Template  

In order to smooth out the frequency of each IMF and 
therefore find the correct meter the Hilbert Spectrum 
was matched to a Gaussified harmonic template matrix. 
This was because each metrical level has a frequency 
which is an integer multiple of the measure frequency 
i.e. the fundamental frequency. Also the points in each 

metrical level are evenly distributed and remain at a 
relatively constant interval through out the piece [1]. 
These assumptions exclude expressive timing changes 
and also tempo changes, both of which shall be 
explored in future work. One other restrictive 
assumption made was that the music had a 4/4 time 
signature.  
The Gaussified harmonic template is constructed by 
creating a matrix the same size as the Hilbert Spectrum 
with four harmonically spaced double sided Gaussians 
centred at 1, 2, 4 and 8 times the fundamental i.e. 
measure frequency. These harmonically spaced 
Gaussians therefore relate to the measure, half measure, 
tactus and the level one above the tactus. The sigma 
coefficient of each of them is in direct proportion to 
their centre frequency, thus the Gaussians get wider as 
frequency increases taking into account the less stable 
higher frequency IMFs.  The fundamental frequency is 
slowly increased and a best fit is found by calculating 
the sum of the element wise product of the Hilbert 
Spectrum and the harmonic template. The template 
resulting in the largest sum is chosen as the meter of the 
piece and the periods of the measure and tactus are 
taken from the fundamental and its 4th harmonic as the 
music is assumed to be a 4/4 time signature. 

4.4. Phase Estimation 

Once the frequency, and hence period of the tactus and 
measure have been calculated two separate ‘marker’ 
vectors are created  with 1’s spaced at the respective 
periods and 0’s elsewhere. To find the correct phase for 
the tactus, the ‘tactus marker’ is cross-correlated with 
the corresponding IMF for one whole period. The lag 
with the largest value relates to the correct phase and so 
the tactus marker is shifted by that amount. The same 
method is used for the estimation of the measure phase 
and it is cross-correlated with a lower frequency IMF. 
However, only lags corresponding to tactus positions 
are used as the GTTM states that a pulse at any metric 
level must also be a pulse at a higher level [1]. The 
decision of which IMF to use for cross-correlation is 
based upon the period of the tactus and measure. As 
EEMD acts in a similar fashion to a dyadic-filter bank, 
the frequency range of the IMFs can be calculated 
before hand and then matched to the frequency of the 
tactus or measure marker vectors in question. 

5. RESULTS 

A total of 8 one-minute excerpts from western pop 
songs with a constant tempo and 4/4 time signature 
were chosen at random for testing. The periods and 
phases of both the measure and tactus were calculated 
and the results are shown below.  
Fig.3. shows the percentage of correctly estimated 
tactus (and hence measure) periods and is compared to 
results given in [4]. The results for this algorithm are 
marked F1 and the others are notated as they appear in 



  
 

 

[4]. A tempo is deemed correct if it is within 4% of the 
ground truth tempo. It should be noted that the other 
algorithms were tested on over 450 songs and the results 
obtained here will be more susceptible to random 
variation due to the small test set. One other point to 
note is the results in [4] allowed for doubling or halving 
of tempo, a phenomenon not present in F1. 
 

 
Figure 3. Percentage of correctly estimated tempos. 

 
Table 1 shows the results of the phase estimation. Each 
tactus and measure pulse is accepted if it is within a 
certain window of the ground truth tactus and measure 
positions. This window is 17.5% of the period for the 
tactus and 10% of the period for the measure. The 
results are poor for the following reasons. In the event 
of a wrong period estimation, the tactus positions start 
of aligned but slowly drift from the correct position over 
time. The measure period’s phase calculation fails as the 
algorithm essentially finds the tactus pulse in each 
measure with the largest value in the detection function 
and deems that to be correct, which is often not the case.  
 
 
 
 
 

Table 1. Percentage of correctly placed metrical pulses 

6. CONCLUSION AND FUTURE WORK 

Although this research is in its early stages the results 
are promising. The 4/4 time signature and constant 
tempo restrictions were in place purely for 
simplification of the task and can easily be removed. 
The time signature could be estimated from the 
distribution of energy in the Hilbert Spectrum and an 
adaptive tempo can be estimated using the harmonic 
template matching by allowing for a best fit which 
varies over time. The sigma coefficients in the harmonic 
template matching have an effect on the quality of 
results and shall be investigated along with weighting 
each Gaussian function used. 
Measure phase estimation is a much more difficult task 
than tactus phase. To improve this, chord change 
boundaries or rhythmic pattern matching could be 
included in the phase estimation stage.  
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