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We present the application of a novel method of time-series analysis, the Hilbert-Huang Transform,
to the search for gravitational waves. This algorithm is adaptive and does not impose a basis set on
the data, and thus the time-frequency decomposition it provides is not limited by time-frequency
uncertainty spreading. Because of its high time-frequency resolution it has important applications
to both signal detection and instrumental characterization. Applications to the data analysis of the
ground and space based gravitational wave detectors, LIGO and LISA, are described.
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Introduction — A vital area of gravitational wave
(GW) research is the development of data analysis al-
gorithms that are able to detect non-linear, transient
signals. The data analysis effort is especially relevant
as the Laser Interferometer Gravitational Wave Obser-
vatory (LIGO) [1, 2] undertakes a one-year science run
at full design sensitivity. Also, the Laser Interferometer
Space Antenna (LISA) [3] is engaged in the development
of analysis algorithms to search for its candidate sources.

The Hilbert Huang Transform (HHT) [4] presents a
fundamentally new approach to the analysis of time se-
ries data. Its essential feature is the use of an adap-
tive time-frequency decomposition that does not impose
a fixed basis set on the data, and therefore it is not lim-
ited by the time-frequency uncertainty relation charac-
teristic of Fourier or Wavelet analysis. This leads to a
highly efficient tool for the investigation of transient and
non-linear features. Applications of the HHT include ma-
terials damage detection [5] and biomedical monitoring
[6, 7]. Because General Relativity is an inherently non-
linear theory, and because LIGO, LISA, and other GW
detectors produce a great variety of non-linear and tran-
sient signals, the HHT has the promise of being a power-
ful new tool in the search for gravitational waves. This
article describes the application of the HHT to GW data
analysis.

The HHT proceeds in two steps. First, the process of
Empirical Mode Decomposition (EMD) reduces the time-
series under analysis into components, known as Intrinsic
Mode Functions (IMFs), thereby ”sifting” or separating
out the different frequency scales of the data. The IMFs
when summed reproduce the original time series. The
sifting is done adaptively, with no a priori structure im-
posed on the data.

The IMFs have a vertically symmetric and narrowband
form that allow the second step of the HHT to be ap-
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plied: the Hilbert transform of each IMF. As explained
below, the Hilbert transform obtains the best fit of a si-
nusoid to each IMF at every point in time, identifying an
instantaneous frequency (IF), along with its associated
instantaneous amplitude (IA). The IF and IA provide a
time-frequency decomposition of the data that is highly
effective at resolving non-linear and transient features.

Instantaneous Frequency — The IF is generally ob-
tained from the phase of a complex signal z(t) which is
constructed by analytical continuation of the real signal
x(t) onto the complex plane [7]. By definition, the ana-
lytic signal is

z(t) = x(t) + iy(t) (1)

where y(t) is given by the Hilbert Transform:

y(t) =
1

π
P

∫ ∞

−∞

x(t′)

t − t′
dt′ (2)

(Here P denotes the principal Cauchy value.) The am-
plitude and phase of the analytic signal are defined in the
usual manner: a(t) = |z(t)| and θ(t) = arg z(t) .The ana-
lytic signal represents the time-series as a slowly varying
amplitude envelope modulating a faster varying phase
function [8]. The IF is then given by ω(t) = dθ(t)/dt,
while the IA is a(t). We emphasize that the IF, a function
of time, has a very different meaning from the Fourier
frequency, which is constant across the data record being
transformed. Indeed, as the IF is a continuous function,
it may express a modulation of a base frequency over a
small fraction of the base wave-cycle. Conditions on the
form of x(t) that allow the application of this procedure
are: 1) symmetry with respect to the local zero mean,
and 2) the same number of zero crossings and extrema
[4]. A time-frequency analysis of a frequency modulated
signal serves to illustrate the concept of instantaneous
frequency. An important GW source for LISA is the
inspiral of supermassive black holes (SMBH). The GW
waveform from this source has a base frequency which
chirps as the masses approach, and is also phase and am-
plitude modulated due to spin-orbit coupling [9]. The
time evolution of the base frequency of the GW from the



inspiral is given to first order by [10]:

f =
1

8π

(

GMt

c3

)− 5

8

(

µ

Mt

(t0 − t)

)− 3

8

(3)

where µ = m1m2/(m1 +m2) is the system reduced mass,
Mt is the system total mass, G is Newton’s constant, c
is the speed of light, and t0 is the coalescence time.

Fig.1-(a) shows the waveform from an SMBH binary
inspiral with masses m1 and m2 of 106 and 105 so-
lar mass, and spins s1 and s2 of 0.95m2

1 and 0.95m2
2.

This waveform is used as input to the HHT and FFT-
based spectrogram to perform the time-frequency anal-
ysis, shown in Figs.1-(b), -(c), -(d). It is clear that the
extraction of the IF and IA provides high time-frequency
resolution of the waveform, showing detail of the chirp as
predicted by Eq.(3) (dotted line in Fig.1-(b)), and also
amplitude modulation due to the spin-orbit coupling. In
contrast, the decomposition of the chirp through the FFT
is seen to be limited by the time-frequency uncertainty
relation: ∆t∆f ∼ 1, where ∆t and ∆f are the time
interval and (Fourier) frequency bandwidth. The detail
resolved in the IF and IA of the modulated SMBH binary
waveform will aid significantly in determining the binary
parameters from LISA data.

Empirical Mode Decomposition — The waveform of the
previous example has an approximate symmetry about
zero that satisfies the conditions listed above and allows
meaningful application of the Hilbert Transform for ex-
traction of the IF. To express an arbitrary time-series in
this form the process of EMD is applied [4].

The EMD process consists of forming an envelope
about the extrema of the data by cubic spline fitting,
and then subtracting the average of the envelope from
the data. The extrema of remainder are then fitted, and
the process is repeated as many times as necessary to
obtain a waveform that is symmetric about zero mean
(within a predetermined tolerance). Once this has oc-
curred, the waveform is labeled IMF1 and is subtracted
from the original time series, removing the highest fre-
quency content, and allowing the remainder to be sifted
again to obtain the next IMF. This procedure is illus-
trated in Fig.2.

The sifting identifies and removes components of the
data first at the highest frequencies, then down in fre-
quency to the lowest trends. For white noise the EMD
acts as a dyadic filter, so that the central frequency as-
sociated with IMFn is of order fsamp/2n where fsamp is
the data sampling frequency [11]. A consequence of the
sifting is that the IMFs are vertically symmetric about
zero mean (although both the frequency and amplitude
of an IMF vary in time.) The narrowband and symmet-
ric form of the IMFs are essential to allow the Hilbert
Transform to be applied in a meaningful way [4].

EMD and the Hilbert Transform: The HHT— To illus-
trate the application of the full HHT to GW analysis, we
look at the identification of a signal in white noise (Fig.3).
As an example relevant to LIGO analysis, where strong
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FIG. 1: Comparison of IF and FFT-based spectrogram of
GW signal from SMBH inspiral with spin-orbit coupling. (a)
GW waveform. (b),(c) IF and IA show sharp detail of fre-
quency and amplitude modulation. The dotted line on (b)
plots Eq.(3). (d) FFT spectrogram is blurred because of time-
frequency spreading and spurious harmonics.

signals are not expected, we consider here a weak signal
relative to the noise. An issue for the HHT is that low
signal to noise tends to degrade the IF and IA identifica-
tion, as the signal extrema becomes distorted. A rough
measure of this tendency, determined from simulations,
is ∆f/f ∼ 2

√

δt/5msec/SN, where ∆f is the extracted
frequency width of a periodic wave of frequency f and
duration δt in white noise, with signal to noise SN [12].
Thus in searching for signals with SN < 20 the HHT
works best for δt < 20msec.

As an example we inject a 20 solar mass black hole
binary merger and ringdown signal [13] with SN=10 and
a time duration of 5 msec into white noise at 16 kHz
sampling rate. The merger signal is shown in Fig.3-(a)
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FIG. 2: Illustration of Empirical Mode Decomposition (from
Ref.[4]). (a) time series. (b) average of envelope formed by
fitting extrema. (c) subtraction of average from time-series.
Because the result is not vertically symmetric, the waveform
will be re-sifted until an IMF is identified.
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FIG. 3: HHT of 20 solar mass black hole binary merger sig-
nal in white noise. (a) merger signal, (b) signal in noise
with SN=10, (c),(d),(e) IMFs 2,3,4, (f),(g) instantaneous fre-
quency and power derived from the Hilbert Transform of
IMF3 show the time-frequency-power structure of the merger.
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FIG. 4: HHT marginal spectrum of 1/16sec time-series with
Fourier spectral shapes that are flat, proportional to fre-
quency, and proportional to 1/frequency.

and the time-series of signal in noise is shown in Fig.3-
(b). Figures 3-(c),-(d),-(e) show the sifted IMFs; in the
3rd IMF the signal can be seen, largely separate from the
noise.

Figures 3-(f) and 3-(g) show the instantaneous fre-
quency and power derived from the Hilbert Transform
of IMF3. The signal frequency and power are clearly
visible in the Hilbert Transform of IMF3: the frequency
shows a ramp during the merger and levels off to a con-
stant during the ringdown, while the power shows the ex-
pected rise and decay. This level of detail will aid signal
identification. This may be contrasted with the Fourier
Transform of the merger, which would give the power of
only 1 point with a 200 Hz frequency spread for the en-
tire 5 msec. Finally, we note that further noise reduction
through averaging of the IF and IA over time is possible,
as they are oversampled: the plots of Fig.3 are sampled
at the LIGO data rate of 16 kHz while the frequencies of
interest for LIGO analysis are typically below 1 kHz.

In analogy with an FFT-based search algorithm that
looks for excess power in the Fourier power spectrum [14],
the HHT can be used to search for excess power in the
time domain. For a given time record, the summed power
is computed, and compared to the background level. In
comparison to an FFT-based search, the HHT is most ef-
fective for short signals (< 20msec), where FFT analysis
tends to lose sensitivity from time-frequency spreading.

Analysis of Spectral Shapes — To facilitate the analysis
of data spectral shapes, we use the HHT analogy of the
power spectrum, called the ”marginal spectrum.” The
marginal spectrum is defined as:

M(ω) =

∫

T

0

|a(ω, t)|2dt (4)

where a(ω, t) is the amplitude as a function of the in-
stantaneous frequency at a given point in time. Thus
the marginal spectrum is a measure of the total power
present at a frequency ω over the time interval T .

Figure 4 shows the marginal spectrum of a time-series
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FIG. 5: Time-frequency analysis of simulated instrumental
artifact (Eq.(5)). a) Time-series of frequency modulated,
40 msec transient in white noise. b) IF and IA from HHT:
the modulation of the 60 Hz carrier from 20 Hz to 100 Hz
is clearly visible. c) FFT-based spectrogram: time-frequency
spreading blurs the modulation so that detail of its time struc-
ture is lost.

of length 1/16 second with the following Fourier power
spectral shapes: flat, proportional to frequency, and in-
versely proportional to frequency. The marginal spectra
are seen to have the expected shapes. Since the shape of
the marginal spectrum does not depend on the integra-
tion time, it may be used to examine the detector noise
stationarity in fine detail.

Application of HHT to GW detector characterization
— The LIGO detector includes a large number of me-
chanical resonators, servos, cavity optical resonances,

and light and sideband frequencies with differing Q’s and
transient excitation levels [15]. They can produce signals
which can interact with each other in very transient and
non-linear ways, for example upconverting noise at low
frequencies into the signal band [16]. The HHT can be
used to examine the detailed dynamics of their interac-
tions in a way that is unavailable to Fourier decomposi-
tion.

We show the capability of the HHT to resolve the fol-
lowing non-linear, transient waveform:

y = cos [2π60t + sin (2π40t)] (5)

which contains a 60 Hz carrier frequency, phase mod-
ulated at 40 Hz. This could be produced by a laser
frequency variation at 60 Hz coupled to seismic isola-
tion stack motion at 40 Hz, for example. This waveform,
which lasts only 40 msec, is shown added to white noise
in Fig.5-(a).

After application of the HHT, the modulation of the
carrier frequency from 20 Hz to 100 Hz is clearly visi-
ble in Fig.5-(b), where the IA is shown as a function of
color. In Fig.5-(b) the process of the upconversion of
noise components at 40 and 60 Hz (outside the LIGO
signal band), into components at 100 Hz (within the sig-
nal band), is clearly revealed. Resolution at this level
will aid in understanding transient experimental artifacts
and distinguishing them from real signals. In contrast,
Fig.5-(c) shows the FFT-based spectrogram, where time-
frequency spreading blurs the modulation. In this figure
the detail of the time structure of the modulation is lost.

Summary — We have presented the application of the
Hilbert-Huang Transform to the analysis of GW data.
The high time-frequency resolution of the HHT, which
is not limited by time-frequency spreading, will have im-
portant application to both signal detection and detector
characterization.
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