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Abstract Empirical mode decomposition (EMD) has
recently been introduced as a local and fully data-driven tech-
nique for the analysis of non-stationary time-series. It allows
the frequency and amplitude of a time-series to be evaluated
with excellent time resolution. In this article we consider
the application of EMD to the analysis of neuronal activity
in visual cortical area V4 of a macaque monkey performing
a visual spatial attention task. We show that, by virtue of
EMD, field potentials can be resolved into a sum of intrin-
sic components with different degrees of oscillatory con-
tent. Low-frequency components in single-trial recordings
contribute to the average visual evoked potential (AVEP),
whereas high-frequency components do not, but are iden-
tified as gamma-band (30-90 Hz) oscillations. The magni-
tude of time-varying gamma activity is shown to be enhanced
when the monkey attends to a visual stimulus as compared
to when it is not attending to the same stimulus. Comparison
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with Fourier analysis shows that EMD may offer better tem-
poral and frequency resolution. These results support the idea
that the magnitude of gamma activity reflects the modula-
tion of V4 neurons by visual spatial attention. EMD, coupled
with instantaneous frequency analysis, is demonstrated to be
a useful technique for the analysis of neurobiological time-
series.

1 Introduction

Spectral analysis has gradually become an indispensable tool
in nearly every field of engineering and science (Jenkins and
Watts 1968; Bendat and Piersol 1986; Percival and Walden
1993). To date, the Fourier transform (Oppenheim and Schafer
1989) is perhaps the most commonly used method for spec-
tral analysis. It provides a general method for estimating the
global power-frequency distribution (i.e. power spectrum) of
a given random process, assuming that the process is station-
ary. Many processes encountered in real-world situations,
however, are non-stationary. In the case of neurobiological
time-series data, Fourier analysis (and its derived techniques)
are often insufficient because the underlying processes are
clearly non-stationary. Yet the analysis of neurobiological
time-series frequently requires time—frequency representa-
tions (spectrograms) that indicate how the power spectrum
changes over time.

The short-time Fourier transform (STFT) provides a sim-
ple and intuitive method for attaining a spectrogram
(Oppenheim and Schafer 1989). By sliding a window along
the time axis and repeatedly calculating the Fourier trans-
form, a time—frequency distribution can be obtained. The
spectrogram is an adequate description, however, only if the
time-series is stationary. Moreover, even if the data are
stationary within a time window, the spectrogram has the
additional problem of limited frequency resolution. To ob-
tain precise time information, a narrow time window is re-
quired, but the Fourier transform in a short window gives
rise to low-frequency resolution, which is inversely propor-
tional to the length of the data window. Characterization of
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time—frequency energy concentrations are restricted by the
Heisenberg uncertainty principle (Mallat 1998). Therefore,
with the STFT, one cannot obtain both time-localized and
frequency-localized information with good resolution.

Wavelet analysis (Daubechies 1992; Mallat 1998) has
become popular in the past decade as a method for time-
frequency representation. The Wavelet transform (WT) of a
function x (7) is defined as:

w(a, b) = % / x(Oy* (%) dr

where a is the scale dilation parameter, b is the translation
parameter and the function v (¢) is the mother wavelet (with
* representing the complex conjugate). The mother wave-
let used in this paper is the complex-valued Morlet wavelet,
which is a complex sine wave modulated by a Gaussian enve-
lope: ¥ (t) = exp(iwpt) exp(—12/2). A large wy gives good
frequency resolution at the expense of poor time resolution.
A compromise value of 6 is used in the paper. The scale
dilation parameter can be converted into the frequency by
f = wo/(2ma). Variation of the scale dilation parameter, a,
changes the frequency range of the basis function. The var-
iation of the scale dilation and translation parameters yields
a family of wavelet basis functions. At each frequency, the
translation parameter b, may take a range of values corre-
sponding to the time position along the data sample. A com-
plete wavelet spectrum is obtained by using all appropriate
values of a and b.

Although the WT appears similar to the STFT, there are
three basic differences: (1) the basis functions in the WT are
not limited to the sinusoidal waves, but rather are chosen
by the user to address various problems of time—frequency
resolution; (2) in contrast to the STFT, which uses a sin-
gle analysis window width, the WT principally uses short
windows at high frequencies and longer windows at low fre-
quencies; and (3) when the scale dilation factor, a, in the
WT is changed, the duration and the bandwidth of the basis
function are both simultaneously changed, yet the original
shape of the mother wavelet is retained. Nonetheless, wave-
let analysis is also limited by the fundamental uncertainty
principle, in which both time and frequency cannot simul-
taneously be resolved with the same precision. Moreover,
the analysis results depend on the choice of mother wavelet,
which is arbitrary and may not be optimal for the time-series
being analyzed.

Even with an optimized joint time-frequency localization
(Gabor 1946), the tradeoff between time and frequency en-
ergy concentrations, as bounded by the uncertainty principle,
is unavoidable. Neither the STFT nor the WT can simulta-
neously provide both good frequency and time resolution.
The notion of the instantaneous frequency (Boashash 1992)
has been proposed as a natural solution to the problem of
representing the frequency of a time-series at each time in-
stant without the knowledge of the values at other times.
The Hilbert transform (Bendat and Piersol 1986; Oppenheim

ey

and Schafer 1989), among others (Potamianos and Maragos
1994), has been routinely performed to compute the instanta-
neous frequency. It may be possible, therefore, to obtain good
time and frequency resolution by the Hilbert transform. There
is a problem with the use of instantaneous frequency, how-
ever, in that it only provides one value at each time, whereas
in reality, time-series data usually contain many intrinsic
frequencies. Thus, separation of these many intrinsic frequen-
cies in a time-series is required in order to obtain a meaning-
ful, well-defined instantaneous frequency.

A common solution to this problem has been to perform
bandpass filtering of the time-series, and then to use the
Hilbert transform to extract the instantaneous frequency or
amplitude for each passband of interest (Freeman 2004a,b).
This solution may not be optimal, however, since the choice
of passbands is typically arbitrary, and the resulting instanta-
neous frequencies or amplitudes may be difficult to interpret,
particularly for a wide passband (see below). The recently
proposed empirical mode decomposition (EMD) (Huang et al.
1998a) is a new method that decomposes the time-series into
narrow-band components, namely intrinsic mode functions
(IMFs), by empirically identifying the physical time scales
intrinsic to the data. The peculiar property of each IMF having
a single local frequency is particularly suitable to computing
the instantaneous frequency. The EMD method, therefore,
may be viewed as a pre-processing procedure that is nec-
essary before the Hilbert transform can be used to obtain
instantaneous frequencies. EMD is based on direct extrac-
tion of the signal energy associated with various intrinsic
time scales. The technique adaptively decomposes non-sta-
tionary time-series into a set of intrinsic oscillatory modes.
These components allow the calculation of a meaningful
multi-component instantaneous frequency by virtue of the
Hilbert transform. Thus, one can potentially localize events
in both time and frequency, even in non-stationary time-
series.

In this paper, we examine the use of EMD to study neu-
ronal activity in visual cortical area V4 of a macaque monkey
performing a visual spatial attention task (Fries et al. 2001).
A brief report on part of this work appeared recently in an
article by Liang et al. (2005a). This article is organized as fol-
lows. In Sect. 2, we present the basic methodology of EMD
and the Hilbert transform, each with intuitive examples. The
combined use of the EMD method with the Hilbert trans-
form provides a general approach to non-stationary, nonlinear
time-series analysis. In Sect. 3, we consider two simulations,
where we know exactly the time-series composition, to ver-
ify the implementation and to demonstrate its advantages.
The first example is designed such that the time-series com-
ponents significantly overlap in both time and frequency,
whereas the second is focused on a quantitative examina-
tion of the performance of the EMD method. In Sect. 3,
we also explore the application of EMD to the analysis of
field potential data from macaque cortical area V4 during
visual spatial attention. Section 4 concludes the paper with
discussion of some practical issues relating to EMD applica-
tions.
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2 Methods
2.1 Empirical mode decomposition

Empirical mode decomposition is a general nonlinear, non-
stationary time-series analysis method. The EMD method
was initially proposed for the study of ocean waves (Huang
etal. 1998a), and found immediate application in biomedical
engineering (Huang et al. 1998b; Liang et al. 2000; Balocchi
et al. 2004). The major advantage of EMD is that the ba-
sis functions are derived directly from the time-series itself.
Hence the analysis is adaptive, in contrast to Fourier analy-
sis, where the basis functions are linear combinations of fixed
sine and cosine waves.

The central idea of EMD time-series analysis is a sifting
process to decompose a time-series into a set of IMFs having
well-defined instantaneous frequencies by empirically identi-
fying the physical time scales intrinsic to the time-series. The
instantaneous frequency is defined by the time lapse between
successive extrema. A time-series must satisfy two criteria to
be an IMF: (1) the number of extrema and the number of zero
crossings are either equal or differ at most by one; and (2) the
mean of its upper and lower envelopes equals zero. The first
criterion is similar to a narrow-band requirement. The second
criterion modifies a global requirement to a local one, and is
necessary to ensure that the instantaneous frequency will not
have unwanted fluctuations as induced by asymmetric wave-
forms. The time-series must have at least two extrema — one
maximum and one minimum to be successfully decomposed
into IMFs.

Given these two definitive requirements for an IMF, the
sifting process for extracting IMFs from a given time-series
x (1) is described as follows:

1. Two smooth splines are constructed connecting all the
maxima and minima of x(¢) to get its upper envelope,
Xup(t), and its lower envelope, xjow(?); the extrema can
be simply found by determining the change of sign of the
derivative of the time-series. Once the extrema are iden-
tified, all the maxima are connected by a cubic spline line
as the upper envelope. The procedure is repeated for the
local minima to produce the lower envelope. All the data
points should now be covered by the upper and lower
envelopes.

2. The mean of the two envelopes is subtracted from the data
to get their difference d (t) = x(¢) — (xup(t) + X1ow (¢)) /2

3. The process is repeated for d(¢) until the resulting signal
c1(t), the first IMF, satisfies the criteria of an intrinsic
mode function.

The residue r1(t) = x(t) — c1(¢) is then treated as a new
time-series subject to the sifting process as described above,
yielding the second IMF from r; (). The procedure continues
until either the recovered IMF or the residual time-series are
too small (in the sense of the integrals of their absolute val-
ues), or the residual time-series has no turning points. Once
all of the wavelike IMFs have been extracted, the final resid-
ual component represents the DC component containing the
overall trend of the time-series.

At the end of this process, the time-series x(¢) can be
expressed as follows:

N

xX(6) =y cj(t)+ry(t) )

j=1

where N is the number of IMFs, and ry (¢) denotes the final
residue, which can be interpreted as the trend of the time-
series. The c¢; () are nearly orthogonal to each other, and all
have nearly zero means. Due to this iterative procedure, none
of the sifted IMFs is derived in closed analytical form.

By the nature of the decomposition procedure, the tech-
nique decomposes a time-series into N fundamental com-
ponents, each with a distinct time scale. More specifically,
the first component has the smallest time scale which corre-
sponds to the fastest time variation of data. As the decompo-
sition process proceeds, the time scale increases, and hence,
the mean frequency of the mode decreases. Since the decom-
position is based on the local characteristic time scale of the
time-series to yield adaptive basis, it is applicable to nonlin-
ear and non-stationary data analysis.

A simple example is shown in Fig. 1 to illustrate the idea
of EMD decomposition. The analyzed time-series (Fig. 1a) is
composed of a linear chirp (a sinusoidal wave that increases
in frequency linearly over time) and a nonlinear triangular
waveform. Figure 1b plots the same time-series (thin solid
line) with its upper and lower envelopes (dashed lines), as
well as the mean of the envelopes (thick line). The final IMF
components derived from the EMD are shown in Fig. 1c—e,
where the first IMF (Fig. 1c) and the second IMF (Fig. 1d)
are, respectively, identified as the linear chirp and the tri-
angular waveform, and the last component (Fig. le) is the
negligible residual. With the presence of the non-harmonic
triangular waveform, any harmonic analysis method, such
as the STFT or WT, would produce a much less compact
and physically less meaningful decomposition (Rilling et al.
2003). This example, though simple, underscores the poten-
tially “non-harmonic” nature of EMD.

In practice, the time-series remaining after a certain num-
ber of iterations does not carry significant physical informa-
tion, because, if sifting is carried on to an extreme, it could
resultin a pure frequency modulated signal of constant ampli-
tude. To avoid this, it is typical to stop the sifting process by
limiting the standard deviation, computed from two consec-
utive sifting results, which is usually set between 0.2 and
0.3. By construction, the number of extrema decreases when
going from one residual to the next, and the whole decom-
position is guaranteed to be completed with a finite number
of modes.

2.2 Hilbert transform

Once all the IMFs’ are determined, the instantaneous fre-
quency of each IMF at each time point can readily be ob-
tained by the Hilbert transform (Bendat and Piersol 1986;
Oppenheim and Schafer 1989). The Hilbert transform has
been widely used to obtain the analytic signal associated with
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Fig. 1 A simple example of the empirical mode decomposition (EMD) of a two-component signal. a The analyzed signal consisting a linear
chirp and a nonlinear triangular waveform. b Upper and lower envelopes (dashed lines) of the original signal and its point-by-point mean of the
envelopes (thick line). c—e Three IMFs from the signal. The EMD ends up with essentially two IMFs, each corresponding to the linear chirp and

the triangular waveform

areal signal x(¢), and consequently, the instantaneous enve-
lope and phase functions. The instantaneous frequency that
is of interest in our present report can be derived from the
instantaneous phase.

Given an arbitrary time-series x(¢), the corresponding
analytic signal is defined as:

z(t) = x(t) + iH[x(1)] = a(t) exp[i6(1)], (3
where a(¢) and 6(¢) are the instantaneous amplitude and

phase of the analytic signal z(¢), and the imaginary part
H{[x(#)] is the Hilbert transform of x(¢):

_ 1 r x(u)
H[x(t)]—;P t—udu )

where the notation P indicates the Cauchy principal value
of the integral (Oppenheim and Schafer 1989; Huang et al.
1998a).

The instantaneous phase can thus be derived from the
analytic signal, which still retains the information content of
the original real signal. The instantaneous frequency can then
be obtained from the instantaneous phase as:

w(t) = % &)

To summarize this process, given an IMF c; (t) we first com-
pute its Hilbert transform H{[c; ()], and then find its phase

through the combination of ¢ (t) and H[c;(t)]. The instanta-
neous frequency of the IMF is finally obtained as the

derivative of the instantaneous phase with respect to time. The
Hilbert transform is applied to the IMFs produced by EMD
because if it were applied to an arbitrary wide-band time
series, it could produce negative frequencies, which bear no
relationship to the real oscillations in the time-series (Huang
et al. 1998a). Direct application of the Hilbert transform to
any given time-series is thus of little practical value. To obtain
meaningful and well-behaved instantaneous frequencies, the
time-series to be analyzed must have no riding waves, and
must be locally symmetrical about its mean as defined by the
envelopes of local extrema. Such time-series are not common
in real world data. With the advent of the EMD, it becomes
possible to take full advantage of the Hilbert transform.

To appreciate the advantage of the Hilbert transform, we
designed a simple simulation where a sine wave with abrupt
frequency shifts around its midpoints was generated (Fig. 2a).
As this already met the criteria for being an IMF, the Hilbert
transform was directly applied to the signal. The resulting
graph (Fig. 2b) depicts the transition points and distinguishes
between the two frequencies with precision. As a compari-
son, the results from the STFT (spectrogram, Fig. 2c) and the
WT (scalogram, Fig. 2d) of the same data both show poor
frequency and time localizations for the frequency changes.
Note that some frequency oscillations in the Hilbert spectrum
are due to the discontinuity in the data.

In summary, the EMD allows time-series to be repre-
sented by intrinsic mode functions, to which the Hilbert trans-
form can then be applied. The resulting Hilbert spectrum
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both the short-time Fourier transform and the Morlet wavelet transform. Note that some ripples in the Hilbert spectrum are due to the discontinuity

in the data

enables us to represent the amplitude and the instantaneous
frequency as functions of time in a three-dimensional plot.
The combination of the EMD method with the Hilbert trans-
form offers a potentially powerful analysis technique, namely
the Hilbert—Huang transform (HHT) (Huang et al. 1998a).
The HHT method provides not only a more precise definition
of particular events in time-frequency space than Fourier-
based analysis, but also more physically meaningful inter-
pretations of the underlying dynamic processes.

3 Results
3.1 Simulations

A further series of computer simulations was conducted to
verify our implementation of the method. The first simula-
tion demonstrated that the EMD functions can act as adaptive
time-variant filters. The analyzed time-series (Fig. 3a, top
graph) consisted of two frequency-modulated components,

each a sinusoidal wave that initially increased and then de-
creased in frequency linearly over time, but with the compo-
nents significantly overlapping in both time and frequency as
evident in the spectrogram (Fig. 3b, left). The EMD decom-
position of the time-series gave eight IMF components
(Fig. 3a). The first two IMFs were clearly identified as the two
frequency-modulated components contained in the original
composite time-series, as confirmed by their spectrograms
shown in Fig. 3b (middle and right). In no way can these two
components be separated by pre-defined sub-band filtering.

Our second simulation attempted to quantitatively
examine the performance of the EMD method. We created
a composite time-series consisting of four components, each
amplitude-modulated and frequency-modulated in the gamma
(30-90Hz), beta (13-30Hz), alpha (8-12Hz) and theta
(4-7 Hz) frequency bands, to represent typical frequency com-
ponents found in field potential data. Specifically, each
component was generated by the following rule:

si() = [1+a;O)sinRrfit +6:(0)], i=1,....4 (6)
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where f; were the carrier frequencies, and a;(¢) and 6;(¢)
were obtained from white noise low-pass filtered at 0.05 Hz
and 0.005 Hz, respectively. Each component thus consisted of
a noisy, narrow-band oscillation around a central frequency
at 40, 20, 10 and 5 Hz, respectively, and modulated in both
amplitude and frequency.

The composite time-series and its EMD decomposition
are represented in Fig. 4a. The time—frequency representa-
tions of the composite time-series based on the STFT, the
WT, and the HHT are shown in Fig. 4b successively from the
left to the right. While they all show similar energy—frequency
distributions, both the STFT and the WT spectra suffer from
the uncertainty principle and fail to reveal the frequency var-
iation. The HHT, on the other hand, not only shows the
frequency modulation but also gives a much sharper defi-
nition of the energy.

To quantify the performance of the EMD method, we
used the root-mean-square error (RMSE) as the merit mea-
sure:

57 — 2
RMSE = \/Zt M @)

where x(¢) is the decomposed IMF component, x(¢) is the
original time-series, and 7 is the total length of the time-
series. Fig. 4c shows the derived first four IMFs from the

EMD (solid lines) correspondingly overlain on the original
time-series components (dashed lines). The computed IMFs
are seen to correspond well to the original time-series compo-
nents, a correspondence that is confirmed by the small RMSE
values (the top row in Table 1). As a comparison, the RMSE
values were also computed for individual signal components
reconstructed from the WT. We see from Table 1 that the
EMD clearly gives better performance.

To illustrate the excellent performance of HHT for track-
ing the changes in frequency, we take the 40 Hz component as
an example to compare its known modulated frequency and
its instantaneous frequencies derived from the HHT and the
WT. The results are shown in Fig. 4d. Quantitative
comparison by computing RMSE revealed that the HHT in-
deed has smaller error measure (0.0264) than that of WT
(0.0449).

3.2 Applications of EMD to V4 cortical field potentials

To our knowledge, previous applications of EMD have pri-
marily involved single time-series records. In neurobiology,
itis common to collect hundreds, even thousands, of repeated
trials of subjects performing the same task. To make the
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Table 1 Comparison of RMSE values between HHT and WT for four
individual components centered at 40, 20, 10 and 5 Hz

40Hz 20Hz 10Hz S5Hz
EMD 0.0701 0.1031 0.1301 0.1487
Wavelet 0.1167 0.1955 0.2136 0.2771

EMD technique directly applicable to such neurobiological
data, we have developed strategies for analyzing multiple-
trial recordings. Specifically, we introduce here two working
procedures to illustrate the application of EMD in the analy-
sis of cortical field potentials. The first application deals with
the automatic identification of high-frequency components
in the EMD, whereas the second application focuses on the
automatic extraction of low-frequency components in single-
trial recordings that contributed to the average visual evoked
potential (AVEP).

Field potential data from visual cortical area V4 of a
macaque monkey performing a visual spatial attention task
were used to illustrate the usefulness of the EMD approach.
Field potentials were simultaneously recorded from multi-
ple V4 sites with overlapping receptive fields (RFs). The
monkey fixated a central spot, and after a short delay, two
stimuli were presented at equal eccentricity, one inside and
one outside the RFs. On separate trials, the monkey was re-
quired to attend to the stimulus at one (target) location, and
was rewarded for responding when the target changed color,
ignoring changes at the other (distracter) location. Target and
distracter color changes were equiprobable and uniformly
distributed between 0.5s and 5s after stimulus onset. The
result was two attention conditions: attention inside the RF
vs. attention outside the RF. The analysis described here used
field potentials from one V4 site on 300 trials correctly per-
formed by a monkey whose attention was directed within the
RF of that site, and another 300 trials with attention directed
outside the RF.

A typical example of a single-trial field potential record-
ing from area V4 in the macaque is shown in Fig. 5a, together
with its IMFs derived from the EMD, and the instantaneous
frequencies of IMF components. We can see from Fig. 5 that:
first, strong gamma-band oscillations are observed to domi-
nate the highest frequency (C1) component; and second, the
instantaneous frequencies reveal clear frequency variation of
each component as a function of time, reflecting the fact that
the data are not stationary. Similar results were observed for
other trials although there was variation from trial to trial in
the number of components produced by EMD.

For the multiple-trial recordings, the number of IMF com-
ponents obtained from individual trials was not the same, and
hence, averaging the IMF components across trials was not
possible. Two possible solutions were conceived. The first
was to force the Hilbert spectra from individual trials to have
the same number of bins in time—frequency space and then
average them. Specifically, with the completion of the EMD
decomposition, the Hilbert transform was performed for indi-
vidual trials on all IMF components. Their corresponding
Hilbert spectra were then derived and averaged across all the

trials for the condition of attention inside the RF. An illustra-
tive example of the resulting mean Hilbert spectrum from one
V4 siteis presented in Fig. 6a. Strong gamma activity, increas-
ing over time, is clearly seen in the frequency range from
35Hz to 70 Hz. A similar Hilbert spectrum was observed for
attention outside the RF condition, but with a lower level
of gamma power. Direct comparison between conditions is
observed by contrasting either the spectrum at 2500 ms post-
stimulus (Fig. 6¢) or power at S0Hz as a function of time
for the two conditions (Fig. 6d). The statistical significance,
indicated by the error bars, was assessed by the bootstrap
resampling procedure (Efron and Tibshirani 1993). Gamma
power when the monkey directed attention within the RF
was significantly greater than that for attention outside the
RF. This finding further confirms and extends previous find-
ings (Fries et al. 2001) by revealing the detailed time course
of task-related changes in gamma power.

For comparison, the STFT was performed on the same
data, and the resulting average spectrogram is shown in Fig. 6b.
Both the average Hilbert spectrum and the average spectro-
gram show general agreement about the concentration of
gamma-band energy in time and frequency. However, the
Hilbert spectrum gives a sharper and more refined definition
of the energy contour, whereas the spectrogram spreads en-
ergy over a much wider frequency range. It is evident from
Fig. 6a that the Hilbert spectrum clearly depicts fluctuations
of the gamma frequencies (35-70 Hz) over time.

An alternative to the averaged Hilbert spectrum is to select
IMF component with a particular frequency of interest from
individual trials. The procedure is as follows: (1) EMD is
first performed on individual trials; (2) the decomposed IMFs
from each trial are then subject to the Fourier transform; (3)
the selection of the IMF component pertinent to the frequency
of interest (e.g. gamma activity) is obtained by identifying
a dominant peak in the specific frequency range (e.g. the
gamma band); and (4) averaging the selected IMF compo-
nents from individual trials is finally achieved. In this proce-
dure, the residual component is not subjected to the Fourier
transform as it represents the mean or the trend in the data. By
following this procedure to extract the high-frequency com-
ponents, that is, the gamma activity, from individual trails,
similar results to that shown in Fig. 6d were obtained.

The next application involved the selection of low-fre-
quency IMF components in single-trial recordings in order
to identify components corresponding to the AVEP. In the
case of fine-to-coarse partial reconstruction, the estimated
signal X (¢) can be specifically written as:

K
HOEDINIIO
j=1
where K < N, N is the total number of IMFs in the data. Con-
sidering IMFs statistics that each c; (¢) has local zero mean of
the signal, we designed a three-step procedure (Liang et al.
2005b) to identify the slow varying trend in the data: (1) the
evolution of the mean of x(¢) as a function of K is com-
puted; (2) one sample #-test is employed to determine when
the mean significantly departs from zero; and (3) once K is

(8)
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Fig. 6 a, b Time—frequency Hilbert spectrum a and the short-time Fourier spectrum b for V4 recording site 1 for attention inside the receptive
field. ¢ Hilbert spectra of site 1 for the two conditions, attention inside the receptive field (fat lines) and attention outside the receptive field (thin
lines) at 2500 ms after stimulus onset. Note that both conditions have peaks about 50 Hz, but the peak is larger for the “inside” condition. d Hilbert
spectra at 50 Hz as a function of time for the two conditions. Two prominent patterns are evident: (1) elevated gamma power when the monkey
directed attention within the RF compared to attention outside the RF, a result further confirming and extending previous findings (Fries et al.
2001) by revealing the detailed time course of task-related changes in gamma power; and (2) “climbing” gamma activity in the temporal profile
of which the slope is surprisingly linear. Error bars were obtained by the bootstrap resampling method

identified as a significant change point, partial reconstruc-
tion with IMFs from K+1 up to the residual reveals the slow
varying trend in the data. The procedure works efficiently for
data containing a slow varying trend. Otherwise, an ad hoc
procedure can be simply adopted by selecting the last few
low-frequency components. An example of this procedure is
given in Fig. 7a, where a single-trial field potential recording
in Fig. 5a is considered. We see that K = 3 is the change
point where the mean is significantly (p < 0.01 at the 99%
confidence level) different from the zero-mean null hypothe-
sis. The low-frequency components are, therefore, estimated
from IMF =4 up to the residual (the last component). Adding
up these low-frequency components gives the slow varying
trend of the data, which is shown in Fig. 7b (thick line), also

superimposed on the raw single-trial field potential recording
(thin line).

Following the above procedure, we selected low-
frequency components for individual trials. By averaging
these low-frequency components over all trials, we obtained
the AVEP, as shown in Fig. 7c. Computing the AVEP by
EMD (Fig. 7c, thick lines) offers a striking contrast to that
obtained by directly averaging the single-trial data (Fig. 7c,
thin lines). The difference between these two approaches be-
comes less pronounced as more trials are averaged. By ver-
ifying that a realistic average can be computed from single-
trial EMD components, it is suggested that the analysis of
these single-trial components may also prove useful in some
applications.
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single-trial analysis
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Fig. 8 An example of EMD of a two-component signal. a The spectrogram of the composite signal that consists of two chirp components with
opposite chirp rates and their time—frequency representations cross each other. b, ¢ The spectrograms of the first two IMFs derived from the EMD,
indicating the IMFs do not retain the original signal components. This example stresses that care must be taken in the physical interpretation of

the decomposed IMF components

4 Discussion

In this paper, application of the HHT method to the analysis
of neurobiological time-series has been presented. Extensive
computer simulations have been conducted to validate the
performance of the HHT method. Application of the HHT
to field potentials from cortical area V4 showed that field
potentials were resolved into sets of intrinsic components
having different degrees of oscillatory content. The high-
frequency components were identified as gamma-band (30—
90 Hz) oscillations, whereas the low-frequency components
were the major contributions to the AVEP. We also showed
that the magnitude of time-varying gamma activity was en-
hanced when the monkey attended to a visual stimulus as
compared to when it was not attending to the same stimu-
lus. Comparison with Fourier analysis showed that the HHT
may offer better temporal and frequency resolution. These
results support the idea that the magnitude of gamma activity
reflects the modulation of V4 neurons by visual spatial atten-
tion (Desimone and Duncan 1995). The EMD, coupled with
instantaneous frequency analysis, may prove to be a valuable
technique for the analysis of neural data.

A potential difficulty in the application of HHT to the
analysis of neurobiological time-series lies in how to charac-
terize the spectra for an entire ensemble of trials collected un-
der the same experimental condition. In this contribution, we
have developed strategies to deal with multiple-trial record-
ings. In the selection of the IMF component with the frequency
of interest from individual trials, the Fourier transform is
essentially used to facilitate the identification. As an alter-
native, the Hilbert transform can also be used, where we
first derive the instantaneous frequency from each IMF, and
then identify the main frequency by computing the mode
frequency of each IMF (i.e. the value of instantaneous fre-
quency occurring most frequently in the IMF). In either case,
it is required to have a priori information related to a par-
ticular hypothesis that is to be confirmed (e.g. activity is
in the gamma-frequency range). As an initial data-screen-
ing technique, it is suggested to restrict the Hilbert spectra
from individual trials to have the same number of bins in
time-frequency space and then derive the mean of the Hilbert

spectra. As a precaution, it is useful to compute a standard
time-frequency representation, for example, STFT, to check
the fidelity of the results.

Many signal processing techniques, such as the wavelet
transform, are available for time-series decomposition. The
uniqueness of the EMD method is that the decomposition
is based on the local characteristic time scales of the data,
and the basis functions (or IMFs) used to represent a given
time-series are nonlinear functions that are directly extracted
from the data. Therefore, the time scale is defined by the data
per se, rather than by a pre-determined value. Fourier analy-
sis, whose basis functions are limited to sinusoidal functions,
cannot separate these IMFs without using pre-assigned cut-
off frequencies. This is the crucial difference between EMD
and Fourier-based filtering. Comparison with Fourier anal-
ysis has shown that EMD offers much better temporal and
frequency resolution.

The WT is also an iterative decomposition process aimed
at progressively scrutinizing finer and finer scales in a time-
series. Compared to the EMD method, there are two major
differences. First, linear time-invariant filters are essentially
used in the WT decomposition, which precludes the possibil-
ity of adapting to local variations in oscillatory components.
Second, the basis function (mother wavelet) of the WT is
pre-determined, rather than directly extracted from the data
as in EMD. Furthermore, a range of potential basis func-
tions, from the simplest Haar wavelet to the more complicated
higher-order Daubechies wavelet, are available for use. This
is a potentially serious problem since there is no firm guid-
ance for selection of the mother wavelet, and inappropriate
selection may adversely influence the result of the analysis,
particularly if the wavelet shape does not match that of the
considered time-series in every time instant.

The outcome of selecting low-frequency components in
individual trials is similar to the simple low-pass filtering
approach, but the procedures are radically different. Low-
pass filtering based on Fourier methods is a linear operation
and an a priori determined cut-off frequency must be speci-
fied, whereas EMD-based filtering is nonlinear and its time
scale is defined by the data itself. Unlike low-pass Fourier
filtering, EMD-based filtering does not remove components
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above an arbitrary cut-off frequency some of which might be
useful in certain application such as constructing the AVEP.

While the HHT is a potentially powerful analysis tool
for nonlinear and non-stationary data, great care must be
taken in the physical interpretation of the decomposed IMF
components. The decomposition does not guarantee a well-
defined physical meaning, although the IMF components, in
most cases, carry physically meaningful interpretations of
the underlying dynamic processes. An example is shown in
Fig. 8, where the analyzed signal (its spectrogram shown
in Fig. 8a) consists of two chirp components with opposite
chirp rates and their time—frequency representations cross
each other. Figure 8b, ¢ shows the spectrograms of the first
two IMFs derived from the EMD. Clearly, there is a problem
with the physical interpretation of these two IMFs since they
are not consistent with physical intuition for the phenomena
under investigation. This observation underscores the need
for all of the relevant IMF components to be interpreted to-
gether if the data being investigated do not possess a clear,
physically meaningful separation of scales.

The HHT is a potentially useful addition to our reper-
toire of non-stationary and nonlinear signal processing tools.
Although conceptually quite simple, the technique still needs
to be better understood. Due to the empirical nature of the
EMD method, it lacks an analytical definition. The only way
of better understanding the technique, so far, has been to
resort to extensive numerical simulations in well-controlled
situations (Flandrin et al. 2004; Wu and Huang 2004). There-
fore, the lack of theoretical foundation of the method clearly
calls for further theoretical analysis. In addition, implemen-
tation of EMD requires some further improvements, such
as in management of the end points for cubic splines inter-
polation in the EMD process and selection of the stopping
criteria for the sifting procedure. The influence of the end
points is one problem encountered while implementing the
EMD method; the problem becomes more dominant when
the signal is very short. The decomposition relies on enve-
lope calculations derived from a cubic spline interpolation
between local extrema. The splines, however, are notoriously
sensitive to the end points. It is thus important to make sure
that end effects do not propagate into the interior and cor-
rupt the data. We solve this problem by extending both the
beginning and the end of the data by the addition of char-
acteristic waves which are defined by the two consecutive
extrema for both their frequency and amplitude. The exten-
sion takes place every iteration so that the additional waves
are continuously changing in frequency and amplitude.

To summarize, we have introduced here a new method
for analyzing neurobiological field potential data. The HHT
method offers an alternative to, and advantages over, Fourier-
based methods. We are enthusiastic that this new technique
will prove itself of general value in the field of neural data
analysis.

Acknowledgements Supported by the Whitehall Foundation, NIMH-
IRP, NIMH 67776, NIMH 64204 and NSF 0090717.

References

Balocchi R, Menicucci D, Santarcangelo E, Sebastiani L, Gemignani
A, Ghelarducci B, Varanini M (2004) Deriving the respiratory si-
nus arrhythmia from the heartbeat time-series using empirical mode
decomposition. Chaos Solitons Fractals 20:171-177

Bendat JS, Piersol AG (1986) Random data: analysis and measurement
procedures. Wiley, New York

Boashash B (1992) Estimating and interpreting the instantaneous fre-
quency of a signal — Part I: fundamentals. Proc IEEE 80:520-538

Daubechies I (1992) Ten lectures on wavelets. SIAM: Philadelphia

Desimone R, Duncan J (1995) Neural mechanisms of selective visual-
attention. Annu Rev Neurosci 18:193-222

Efron B, Tibshirani RJ (1993) An introduction to the boostrap. Chapman
& Hall/CRC, London/Boca Raton

Flandrin P, Rilling G, Goncalves P (2004) Empirical mode decomposi-
tion as a filter bank. IEEE Sig Proc Lett 11(2):112-114

Freeman WJ (2004a) Origin, structure, and role of background EEG
activity. Part 1. Analytic amplitude. Clin Neurophysiol 115(9):2077-
2088

Freeman WJ (2004b) Origin, structure, and role of background EEG
activity. Part 2. Analytic phase. Clin Neurophysiol 115(9):2089—
2107

Fries P, Reynolds JH, Rorie AE, Desimone R (2001) Modulation of
oscillatory neuronal synchronization by selective visual attention.
Science 291:1560-1563

Gabor D (1946) Theory of communication. IEEE J Comm Eng 93:429—
457

Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen N-
C, Tung CC, Liu HH (1998a) The empirical mode decomposition
and the Hilbert spectrum for nonlinear and nonstationary time-series
analysis. Proc R Soc Lond A 454:903-995

Huang W, Shen Z, Huang NE, Fung YC (1998b) Engineering analysis
of biological variables: An example of blood pressure over 1 day.
Proc Nat Acad Sci USA 95:4816-4821

Jenkins GM, Watts DG (1968) Spectral analysis and its applications.
Holden-Day, San Francisco

Liang HL, Bressler SL, Desimone R, Fries P (2005a) Empirical mode
decomposition: amethod for analyzing neural data. Neurocomputing
65-66:801-807

Liang HL, Lin QH, Chen JDZ (2005b) Application of the empirical
mode decomposition to the analysis of esophageal manometric data
in gastroesophageal reflux disease. IEEE Trans Biomed Eng (in
press)

Liang HL, Lin Z, McCallum RW (2000) Artifact reduction in elec-
trogastrogram based on the empirical mode decomposition method.
Med Biol Eng Comput 38:35-41

Mallat S (1998) A wavelet tour of signal processing. Academic Press,
New York

Oppenheim AV, Schafer RW (1989) Digital signal processing. Prentice
Hall, Englewood Cliffs

Percival DB, Walden AT (1993) Spectral analysis for physical applica-
tions. Cambridge University Press, New York

Potamianos A, Maragos P (1994) A comparison of the energy operator
and Hilbert transform approach to signal and speech demodulation.
Sig Processing 37:95 —120

Rilling G, Flandrin P, Goncalves P (2003) On empirical mode decompo-
sition and its algorithms. In: [IEEE-EUR ASIP workshop on nonlinear
signal and image processing, Grado (I)

Wu Z, Huang NE (2004) A study of the characteristics of white noise
using the empirical mode decomposition method. Proc Roy Soc Lond
A 460:1597-1611



