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Abstract 
 
Involuntary human hand motions, or tremors, are normally regarded as a non-stationary 
process. Due to its nonlinear and non-stationary nature, we need the amplitude and frequency 
information of a tremor at a specified time for accurate and real-time suppression. Research 
to date only approximates tremor as stationary processes and predominant methods such as 
Fourier Transform used to analyze tremor signals completely lose time resolution, therefore, 
loosing accuracy of tremor treatments.  
 
Our research uses a new mathematical method called Empirical Mode Decomposition 
(EMD) to analyze tremor signals. In general, EMD is a time-frequency analysis method that 
is capable of extracting amplitude and frequency information of a signal at a given time 
incident. Because of this, the severity and frequency range of tremors can be identified; 
hence treatment priority can be determined. Since this method can be implemented in a 
small-sized, low-power, fast processing Digital Signal Processor (DSP), low-cost and 
practical detector can be developed. 
 
In this paper, we present our research results using EMD and Hilbert-Huang Transform 
(HHT). The EMD is modified by adaptively changing its stopping criteria and therefore more 
accurately extract a tremor signal’s amplitude, frequency, and time information. The results 
are expected to be helpful for real-time tremor detection and suppression.   
 
Introduction 
 
Tremor is the most common movement disorder and manifests as involuntary, rhythmic, 
oscillatory movements produced by reciprocally innervated antagonist muscles. Most often, 
the hand and forearm are involved. The bulk of research has focused on scientific 
understanding, specific diagnosis, pharmacologic and surgical therapies. Treatment of tremor 
remains symptomatic and many options have side effects and inherent risks. A number of 
mechanical means for restoring functionality to tremulous forearms and hands have been 
developed, though no device is yet generally available. While available treatments help many, 
many others still experience distressing and disabling tremor [1], [2]. Most recent approaches 
approximate tremors as stationary processes, when they are nonlinear, non-stationary in 
nature. The conventional Fourier Transform used to analyze tremor signals reveals frequency 
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content in a tremor signal. However, because the transform averages the signal over time, it 
completely loses time resolution and therefore loosing real-time treatments of tremors. An 
example will be given in the later section of this paper. 
 
A recent DSP approach models tremors as AR(3) (third-order AutoRegressive) processes, 
and an linear predictor is developed for adaptive processing of tremor signals.[3] Though the 
results based on Levinson-Durbin algorithm (LD algorithm) show faster convergence than 
LMS (Least Mean Square) and RLS (Recursive Least Squares) algorithms, however, it does 
not detect amplitude and frequency range of a tremor at a specific time. In addition, no effort 
to date specifically addresses tremors in different frequency bands, though it has been shown 
that different kinds of tremor have different characteristics that range from 3 – 15 Hz [4], [5].  
 
Due to its nonlinear and non-stationary nature, accurate suppression of tremor demands 
knowledge of its amplitude and frequency at any given time incident. In this research effort, 
the latest mathematical method called Empirical Mode Decomposition is employed to extract 
tremor amplitudes and frequencies at any time incident, hence uniquely determines treatment 
priority at that time and consequently significantly improves treatment quality. This method 
provides great potentials of characterizing the levels of severity and helps locate tremors in 
different frequency bands. Because this method can be implemented in a small-sized, low 
cost Digital Signal Processor, a low-profile, wearable electro-mechanical system to detect 
and suppress tremor can be developed as a potentially effective, safer, less expensive 
treatment option [6]. In the results presented in [6], the stopping criteria for EMD were fixed, 
and therefore, optimal results may or may not be obtained depending on the nature of the 
tremor signals. Further research was conducted to adaptively adjusting the stopping criteria 
for this algorithm, and more accurate results can be obtained and are presented in this paper. 
 
Tremor signal is a time series. For any arbitrary time series x(t), an analytic function Z(t) can 
be constructed as: 

)()()( tjxtxtZ h+=        (1) 
where xh(t) is the Hilbert Transform of x(t). 
 
In order to extract the instantaneous bandwidth and instantaneous frequency information of 
the signal, The analytic signal is alternatively expressed as: 

)()()( tjetatZ θ=       (2) 
and the instantaneous bandwidth and instantaneous frequency of the analytic signal can be 
obtained by equations (3) and (4), respectively: 

)(
/)(

ta
dttdaBWinst =       (3) 

 

dt
tdt )()( θω =        (4) 

In the case of hand tremors, these parameters provide crucial information that helps tremor 
suppression. However, due to its nonlinear, nonstationary nature, instantaneous information 
of tremor signals may not be extracted accurately or on a real-time basis. Empirical Mode 
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Decomposition (EMD) provides a powerful means of decomposing nonlinear, nonstationary 
signals into the sum of a series of stationary signals (AM-FM signals) and hence makes real-
time tremor detection possible. 
 
Empirical Mode Decomposition and Hilbert-Huang Transform 
 
A. Empirical Mode Decomposition Method 
 
Empirical Mode Decomposition method was first proposed by N. E. Huang in 1998 [7]. The 
basic concept of EMD is to identify proper time scales that reveals physical characteristics of 
the signals, and then decompose the signal into modes intrinsic to the function, which are 
referred to as Intrinsic Mode Functions (IMF). IMFs are signals satisfying the following 
conditions: 
 
1) in the whole dataset, the number of extrema and the number of zero crossings must either 

be equal or differ at most by one, 
2) at any point, the mean value of the envelope defined by local maxima and the envelope 

defined by the local minima is zero. 
 
The first condition is similar to the traditional narrow band requirements for a stationary 
Gaussian process. The second condition is new – its locality is necessary so that the 
instantaneous frequencies will not have unwanted fluctuations induced by asymmetric 
waveforms. An IMF is not limited as a sinusoid in the classical sense (such as in Fourier 
Transforms), it can be an amplitude and frequency modulated signal and, can even be a non-
stationary signal. This method enables us to eliminate the drawback of a traditional time-
domain to frequency-domain transformation where frequency contents are observed by 
sacrificing time resolution. Instead, IMFs provide amplitude and frequency information of a 
signal at any given time. 
 
Adaptive EMD Procedures: EMD is an iterative or “sifting” process. EMD procedures are 
described in figure 1. 
 
1) Upper and lower envelopes of the signal hx(t) are constructed with its maxima and 

minima using cubic spline function. 
2) Mean of the envelopes mi is subtracted from the signal hx(t) to obtain a new signal hi(t). 
3) Determine if hi(t) is an IMF using the criteria described above. 
4) If hi(t) is an IMF, it is subtracted from the original signal hx(t), and the resulted new 

signal hx(t) goes through the above procedures until another IMF is obtained. 
5) When the last IMF is obtained, it is checked to determine if this IMF is in the tremor 

frequency band (3 – 15 Hz). If not, the algorithm adaptively adjusts the stopping criteria 
until the in-band IMF representing a tremor is detected. 

 
 

 
 

Input data hx(t) = x(t)
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Figure 1: EMD Procedures 
 
The stopping criteria consist of several important parameters including the absolute 
amplitude of the remaining signal, the mean value of the envelope, the cross-correlation 
coefficient between the remaining signal and the original signal, and the Standard Deviation 
(SD) between two consecutive results in the sifting process. SD can be expressed by the 
following equation (5) and our simulation results have shown that the reasonable values for 
SD are between 0.25 – 0.3. 
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As shown in figure 1, the stopping parameters are adjusted adaptively based on the quality of 
the extracted IMFs. The main quality measures of an IMF include the amplitude (to 
determine the severity of a tremor) and the frequency range of the IMF (to determine if the 
IMF is in the desired detection frequency band of 3 – 15 Hz). It is worth noting that the 
extracted IMFs may not be single frequency components, instead, they may be amplitude-
frequency modulated signals. Determining the exact frequency of the signal is impossible. 

Use cubic spline to construct upper and lower envelopes 
with maxima and minima, respectively

Calculate mean mi of the envelopes

hi(t) = hx(t) – mi
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Whether or not the IMF is in the desired frequency band is determined by counting the 
number of maxima and minima for a known detection time period. 
 
B. Hilbert-Huang Transform (HHT) 
 
Suppose we obtained N IMFs through the above EMD process. Let zi(t) be analytic function 
constructed with the ith IMF and equation (2), then zi(t) can be expressed as: 

∫==
dttj

i
tj

ii
ii etaetatz

)()( )()()(
ωθ      (6) 

and the original signal x(t) can be expressed as a linear combination of the real parts of zi(t) 
and a residue term rn: 

n

N

i

dttj
i retatx i +

⎭
⎬
⎫

⎩
⎨
⎧ ∫= ∑

=1

)(
)(Re)(

ω
     (7) 

The residue term rn can be used to indicate the trend of the signal. Equation (7) enables us to 
represent amplitude as a function of frequency and time. The frequency-time distribution of 
the amplitudes is designated as the Hilbert spectrum, H(ω, t) and can be contoured on a 
frequency-time plane. To obtain a measure of total amplitude (or energy) contribution from 
each frequency, the marginal spectrum is defined as: 

∫=
T

dttHh
0

),()( ωω       (8) 

In addition to h(ω), Instantaneous Energy (IE) is defined in equation (9) and can be used to 
check the energy fluctuations. 

ωω
ω

dtHtIE ),()( 2∫=       (9) 

The following is a classical example that shows how this algorithm works. Although the 
process is not non-stationary, however, the example illustrates the basic concepts of EMD: 
 

x(t) = 0.3 cos(2π3t)+0.5 cos(2π5t)+0.7 cos(2π8t)+cos(2π12t)  (10) 
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Figure 2: The IMFs of equation (10) 
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Figure 3: The HHT spectrum of the IMFs 

 
The signal is so chosen that it contains various frequencies within the tremor signal 
frequency band. The goal of this experiment is to test if the amplitude and frequency contents 
of the signal can be accurately extracted by the method proposed. As expected, the 
information of interests was obtained with extreme accuracy. Figure 2 shows the extracted 
IMFs, and figure 3 shows the HHT results. 
 
Figure 3 shows the amplitude of each IMF contoured on the time-frequency plane. As can be 
observed from this figure, all frequency contents (12 Hz, 8 Hz, 5 Hz, and 3 Hz) were 
extracted by the EMD algorithm. The amplitude of each frequency component can be 
determined by comparing with the color bar, which is 1, 0.7, 0.5, and 0.3, respectively. This 
indicates the fact that at each point of time of interest, the frequency contents and their 
respective amplitudes can be determined and hence made it possible for real-time 
suppression of hand tremors. 
 
Test platform and data collection 
 
The test-bed consists of three major subsystems: a hand tremor simulator, a sensor network 
interface, and a data acquisition device. The simulator generates simulated human hand 
tremors by composite movements of hand and arm, and detected by a 3-axis accelerometer 
sensor network. Data is collected via a LabView USB DAQ device. Each subsystem will be 
explained in the following sections. 
 

 
 

Figure 4: Human Hand Tremor Simulation Test-bed 
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A. Hand Tremor Simulator 
 
Figure 4 shows the hand tremor simulator. This device was constructed using an arm and a 
hand from a military training dummy. Solenoids were used to move the hand and the arm at 
low frequencies. Tremor motion in the arm was simulated using a push-type solenoid 
attached near the wrist. To simulate tremor motion in the hand, an assembly was developed 
to house a ball bearing, which allowed smooth motion for the hand to pivot. This assembly 
was attached to the forearm and another push-type solenoid. This allowed the wrist to pivot 
from side to side to simulate a hand shaking during a tremor. The final assembly allows a 
realistic simulation of tremors by moving the arm up-and-down and the hand sideways 
simultaneously at different frequencies.  
 
B. Detection and Data Acquisition 
 
Signal detection was accomplished using an ADXL330 3-axis accelerometer network. As 
shown in figure 4, three accelerometers were used, one on the middle finger, one on the hand, 
and one on the forearm, respectively. Because of involuntary vibrations, the movements on 
the middle finger best depict the nature of a tremor signal which in most cases is a non-
stationary process. The measured results are the time-series of acceleration on X. Y, and Z 
directions and filtered with 50 Hz low pass filters on each direction. The acceleration can 
then be translated into distances travelled that represent the amplitude of the tremor signals. 
The tremors are sampled at 200 samples/sec. Total 6000 samples were acquired for one 
complete test cycle of 30 seconds. Data were collected via a designed LabView Virtual 
Instrument (VI) user interface and an NI-USB 6008 DAQ device. 
 
Results 
 
This section provides two examples of applying the proposed method for tremor detection. 
The data used were collected directly from the aforementioned test platform. The first 
example used a single frequency to move the arm and the aim was to demonstrate the 
superiority of the EMD to the traditional Fourier transform. The second example used a 
composite signal to drive the arm and the hand simultaneously, and the purpose was to show 
the results similar to a real-world situation. 
 
In the first example, a 6Hz signal was used to move the arm. It was expected that the sensors 
would detect 6Hz signals in all directions. Sensor A, B, and C represent sensors located on 
the hand, arm, and the middle finger, respectively. Figure 5 shows the original data collected 
at AX, BX, and CY, where the first letter indicates the sensor, and the second letter indicates 
the direction of movement (e.g., AX represents data from sensor A along X direction). 
 
As shown in figure 6, a Fourier analysis revealed the expected frequency contents in all 
directions. It can be observed that 6Hz signal is dominant in all directions and locations, 
along with its higher ordered harmonics. It can also be observed that the data collected from 
sensor B (arm) shows clearly the 2nd and the 3rd order harmonics, sensor A (hand) shows a 
clear 2nd order harmonic, and sensor C (middle finger) mainly shows the fundamental 
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frequency at 6Hz. However, from Fourier analysis, one can only observe the frequency 
contents and their respective amplitude, no information is available as to when the 
frequencies occurred. This is due to the very nature of Fourier analysis that the information is 
averaged over time. 
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Figure 5: Original data collected from AX, BX, and CY with 6Hz driving signal 
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Figure 6: Fourier analysis of AX, BX, and CY signals 

 
Figure 7 shows the IMFs obtained from EMD of AX, BX, and CY signals. As can be 
observed from these plots, more detailed information of the motions was provided. Each 
subplot shows an average frequency of 6Hz, however, amplitude change is also clearly sown 
in each subplot. These IMFs can be viewed as AM-FM modulated signals. Intuitively, tremor 
signals are not expected to be composed of single-frequency fixed-amplitude components. 
Therefore, EMD results intuitively better explains the nature of any tremor signals.  
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Figure 7: IMFs for AX, BX, and CY signals 
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Figure 8 shows the HHT spectrum of the above signals. As can be seen in the plots, the 
amplitudes are displayed as functions of time and frequency. From these plots, one can easily 
find the amplitude and the frequency of the tremor at a certain time of interest. For example, 
the subplot in the middle shows the HHT spectrum of the data collected by sensor B in the X 
direction. This subplot shows an average frequency over time is around 6Hz, but the signal 
does cover a frequency band from 4.5 – 7.5 Hz or so. In addition, the subplot shows the time 
a specific frequency occurs. It can be seen from this subplot that between 1.8s and 2.2s time 
period, there was no 6Hz signal present at sensor B at its X direction. Moreover, the 
amplitudes of the signals are contoured on the time-frequency plane, and make it possible for 
the researchers to investigate the magnitude of a certain frequency signal at a specific given 
time. This can be easily observed from the first and the third subplots where higher 
frequency contents presented at lower (in blue color) amplitudes. These results are consistent 
with those obtained from the Fourier analysis shown above. Unlike Fourier analysis where 
time resolution is completely lost, EMD method well preserves time information of the 
tremors. 
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Figure 8: HHT spectrum of AX, BX, and CY signals 

 
In the second example, a 4Hz signal was used to move the arm, and a 6Hz signal was used to 
move the hand. Due to similarities of data on the x, y, and z directions, only tremor signals 
on the z-direction from each sensor are presented in figure 9. Figures 10-12 show IMFs and 
their Hilbert spectrum of each data set. Exact frequencies at 4Hz and 6Hz are not expected 
due to the complex nature of movements and signal modulation property. One needs to be 
careful when interpret the results. IMFs are not single frequency signals, rather, they are 
AM-FM modulated signals reflecting the amplitude and the frequency at a given time point. 
The Hilbert spectral plot contours the amplitude on a time and frequency plane, with x-axis 
being the time axis and y-axis being the frequency axis. The amplitude is presented with 
color match the magnitude indicated in the color bar. The time-frequency plane plots provide 
information on the frequency of the signal propagates over a certain time periods. 
Amplitudes provide information on the magnitudes of predominant tremor signals that need 
to be suppressed and hence help decide treatment priority. 
 
As can be observed from figure 10, there are three IMFs associated with the data collected 
along the z-direction of the sensor mounted on the middle finger. These IMFs are AM-FM 
modulated signals with frequencies span over 4-10 Hz range, and amplitude from 0.02-0.1 
(normalized).  

Frequency (H
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Figure 9: Collected data from sensors A, B, and C, all along Z-direction 
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Figure 10 (middle finger) Figure 11 (arm)  Figure 12 (hand) 

Figures 10-12:  IMFs and HHT Spectrum 
 
The last IMF has an average frequency at around 6Hz, which is the fundamental frequency 
used to move the hand. Similar frequency range can be observed on the signal collected from 
the sensor mounted on the arm, as shown in figure 11. It is interesting to observe the last IMF 
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extracted from the data collected from the sensor mounted on the hand. It shows an average 
frequency at about 4 Hz, which is the fundamental frequency to move the arm. Because the 
sensor is mounted close to the solenoid that moves the arm, the result showed expected 
detection accuracy. 
 
Conclusion  
 
This paper showed our results of analyzing human hand tremor signals using EMD method. 
The novelty of using this method is the identification of magnitude of a tremor signal on a 
time-frequency plane. The increased time resolution of this analysis enables the treatment of 
tremor of a certain frequency at a frequency within a much shorter time interval, and 
therefore, provides possibility of real-time treatments. Further investigation relies on a 
simultaneous multi-dimensional detection of tremor at all directions and a suppression 
mechanism based on the detected IMFs. 
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