
ABSTRACT 
In this paper, an attempt was made to utilize the Hilbert-
Huang transform (HHT) for the analysis of heart rate 
variability signals in order to discriminate between normal 
subjects and patients with low heart rate such as those who 
suffering from congestive heart failure (CHF) and 
myocardial infarction (MI). This decomposition method is 
adaptive and therefore highly efficient. Using the 
Empirical mode decomposition (EMD) method, HRV 
signals are decomposed into a finite and often small 
number of intrinsic mode functions (IMFs) that admit well-
behaved Hilbert transforms. The final presentation of the 
results is an energy-frequency-time distribution, known as 
the Hilbert spectrum. Then the features were statistically 
analysed by analysis of variance (ANOVA) test. It has been shown 
that the use of HHT may prove to be a vital technique for the 
analysis of heart rate variability signals. 
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1. INTRODUCTION 

Heart Rate Variability (HRV) is increasingly used to 
assess autonomic dysfunction in different pathological 
conditions, either of cardiac (myocardial infarction, 
congestive heart failure, life threatening arrhythmias), or 
noncardiac origin (diabetes, neuropathies, obesity, etc [1]. 
 From clinical view, a high degree of heart rate (HR) 
variability is found in persons with normal hearts, whereas 
low HR variability can be found in patients with congestive 
heart failure and patients after myocardial infarction [2]-
[4]. Lombardi and Mortara [4] has been clarified that the 
possibility of using HRV as a prognostic indicator in 
patients with cardiac failure as well as post myocardial 
infarction patients, stems directly from the compelling 
evidence that has been accumulated over the past few years 
about the importance of the derangement of autonomic 
nervous control of the cardiovascular system as one of the 
mechanisms involved in the occurrence of cardiac-
particularly sudden-death.  Also, they review some of the 
most interesting and recent results obtained with the 
analysis of HRV in patients with cardiac failure, focusing 
on two principal aspects; the detection of an abnormal  
autonomic modulation of sinus node, and the prognostic 
value of reduced HRV [4]. 

Reported approaches to characterizing HRV include 
elementary statistical measures of the properties of the R-R 
intervals [2], spectral analysis of heart rate or R-R interval 
time series [5]-[10]. However, these methods are limited by 
implicit assumptions of linearity and stationarity [11]-[13]. 
Moreover, spectral estimation inherently assumes that the 
signal is at least weakly stationary. However, real HRV is a 
non-linear signal and is usually nonstationary. 
Nonlinearities can be dealt through the determination of the 
nonlinear parameters as described in [14]. However, 
nonstationarities like slow linear or more complex trends in 
the HRV signal, can cause distortion to time-and 
frequency-domain analysis [15]. 
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To deal with nonlinear and non-stationary signals, 
Huang et al. [16] proposed a technique called Hilbert-
Huang transform (HHT). The technique is based on the 
direct extraction of the energy associated with various 
intrinsic time scales. The local energy and the 
instantaneous frequency derived from the IMFs through the 
Hilbert transform can give a full energy-frequency-time 
distribution of the data. Such a representation is designated 
as the Hilbert-spectrum [16]. 

In this paper, we introduce the use of the basis function 
of the Hilbert-Huang transform as features to be used as 
discriminant parameters between patients with high and 
low heart rate. This achieved by applying Hilbert-Huang 
transform to a set of real HRV short-term data obtained 
from normal subjects and patients suffering from 
congestive heart failure and myocardial infarction diseases  

The paper is organized as: Section-2 presents overview 
of HRV data collection. Section -3 presents the empirical 
mode decomposition (EMD), HHT; and the time-frequency 
representation. Section-4 includes the HHT feature 
extraction. Section–5. provides ANOVA test for HHT 
features.  While section – 6 is the conclusion.  

 
2. DATA COLLECTION 

The input signal to EMD is the RR database obtained 
from the PhysioBank Interbeat (RR) Interval Databases 
extracted from website of RR database [17]. Three groups 
were chosen which are Normal Sinus Rhythm (NSR), 
Congestive heart failure (CHF), Myocardial Infarction pre-
medication (MI). For normal sinus rhythm, 72 beat 
annotation files for long-term ECG recordings (35 men, 
aged 26 to 76, and 37 women, aged 20 to 73) were used. 
For congestive hear failure, 48 beat annotation files for 

http://www.physionet.org/physiobank/database/#rr#rr


long-term ECG recordings of subjects aged 22 to 79. 
Subjects included 19 men and 6 women; gender is not 
known for the remaining 23 subjects. For myocardial 
infarction, 100 beat annotation files for long-term ECG 
recordings of patients with myocardial infraction pre-
medication. Gender is not defined for this database. We 
perform EMD method on heart rate variability signals of 
length 1024 samples (8 seconds where sampling rate is 128 
sample/second). 
  
3. EMPIRICAL MODE DECOMPOSITION 

The empirical mode decomposition (EMD) was first 
introduced by Huang et al [16], which is the basis functions 
of the so-called Hilbert- Huang Transform (HHT). The 
empirical mode decomposition (EMD) method is 
composed of a three step algorithm. First data 'sifting' to 
generate the intrinsic modes (IMF), second step is to apply 
the Hilbert transform to the intrinsic modes and the third 
step performs a spectral analysis using the Hilbert 
Transform using the IMF amplitudes and instantaneous 
frequencies. 
 
3.1 IMF COMPUTATION 

The principle of EMD is to decompose a signal into a 
sum of oscillatory functions, namely intrinsic mode 
functions (IMFs), that: 1) have the same numbers of 
extrema and zero-crossings or differ at most by one; and 2) 
are symmetric with respect to local zero mean [18].  An 
iterative algorithm called the sifting technique computes 
the IMFs. Let x (k); k = 1,…, k be the original signal. The 
sifting evolves according to the following steps: 

          a. Find the all maxima and minima of x (k). 
b. Compute the corresponding interpolating 
signals with cubic spline 
interpolation. 
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c.   Calculate the point-by-point mean from the 
upper and lower envelopes, 
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d. Extract the details; d (k) =x (k)-m (k). 
e.    Check the properties of d(k): 

 If d (k) meets the above defined two 
conditions, an IMF is derived; 

and replace x (k) with the 
residual r (k) =x (k)-IMF (k). 
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 If d (k) is not an IMF, replace x (k) with  
d (k). 

f.    Repeat steps from (a) to (e) until the residual 
satisfies some stopping criterion. 

To guarantee that the IMF components retain enough 
physical sense of both amplitude and frequency 
modulation, Huang et al [16] gave a criterion for the sifting 
process to stop. This can be accomplished by limiting the 

size of the normalized standard deviation, SD, computed 
from two consecutive sifting results as 
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The normalized SD is usually set between 0.2 and 0.3. 
Finally, x (k) can be expressed as f follows: 
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Where M is the number of IMFs, denotes the final 
residue which can be interpreted as the dc component or 
the trend of the original signal, and are nearly 
orthogonal to each other, and have nearly zero means. Due 
to this iterative procedure, none of the sifted IMFs is 
derived in closed analytical form [19]. 
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 Fig.1 shows the total number of IMFs extracted from 
heart rate variability signal of a normal subject. 
 

 
 

Figure 1: Seven IMFs extracted from heart rate variability signal 
of a normal subject. 

 
3.2 IDENTIFICATION OF TREND 

By the nature of the decomposition procedure, the data 
is decomposed into M fundamental components, each with 
distinct time scale. More specifically, the first component 
as the smallest time scale which corresponds to the fastest 
time variation of data. As the decomposition process 
proceeds, the time scale increases, and hence, the mean 
frequency of the mode decreases. Based on this observation 
a general time space filtering may be of the form: 
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Where y (k) is the filter output, and l, h [ ]Nl,..., ∈ , l ;h≤  
if l=1, and h<N, it is a high pass , if l > 1, and h = N, it is a 



low pass filter, if it is a band pass filter. A 
three-step procedure to identify the slow-varying trend: 1) 
the mean and the standard deviation of y (k) taken over 
time are performed as a function of h; 2) one-sample t-test 
is used to determine when the mean significantly departs 
from zero; and 3) once h is identified partial reconstruction 
is done; with a final residual composed of the resulting 
IMFs from h+1 to N. 
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To quantify the performance of EMD method, the root-
mean squared error (RMSE) is used as the error measure: 
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Where K is the number of time points; Fig. 2 shows the 
step-by-step coarse-to-fine reconstruction of the HRV 
signal for normal subject from the IMF components where 
the original signal is plotted in blue lines and partial sum of 
the IMFs in green lines. The very first plot shows the signal 
and the last component IMF8, the residue of the sifting, 
which denotes the dc component in the original signal. The 
very last plot shows the summation of all the IMFs, which 
looks like the original data with RMSE equal to 1.3874e-
014. The intermediate plots show the progress of addition 
of the IMF components. If we stopped at any step, the data 
was filtered. 
 

 

   

  
 

Figure 2: Illustration of the EMD acting as a low-pass filter 
through the reconstruction of the data from the IMF 

components 

3.3 DISCRETE HILBERT TRANSFORM 
The Hilbert transform was first developed to process 

non-stationary narrow-band signal [20]. The Hilbert 
transform is a time series analysis technique to derive 
amplitude and phase information of a data set as a function 
of time.  

The discrete Hilbert transform (DHT) of N-point's 
signal x (k) is calculated as follow: 

a. Calculate the Discrete Fourier Transform (DFT) of 
the signal x (k); . ( ){ }kxDFTX =1

b. Compute the Hilbert transformer operator H(k) 
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c. Calculate the element wise product; Y=H. . 1X
d. Calculate the inverse DFT of the product; y=IDFT{Y 
(k)}, then the DHT is H{x(k)} =Real{y (k)}. 

Given a real signal x(k) , one can build the 
corresponding analytic signal (or complex trace) [21] : 
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Huang et al proposed the instantaneous frequency 
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Fig.3 shows the original HRV signals (solid line) of a 
normal subject and its Hilbert –Transform (dotted line). It 
can be noted from the figures that the Hilbert transform is 
related to the original signal by a 90° phase shift. 
 

 
 

Figure 3: The Hilbert transform of the original HRV signal 
for (a) normal sinus rhythm 

 



3.4. HILBERT AMPLITUDE SPECTRUM 
Hilbert amplitude spectrum of the initial time series can 

be represented as in Huang et al.[16], which is obtained in 
the following way: for each intrinsic mode function 

, if )(kIMFi )(kiω is the corresponding instantaneous 
function, one can represent in three dimension plot the 
triplet {k , )}(),( kAk iiω where is the amplitude 

of the complex trace associated to  Fig.4 (a) 
shows the Hilbert –Huang amplitude spectrum for each 
IMFs for a normal subject  
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Figure 4.: The Hilbert –Huang Spectrum for each IMFs for a 
normal subject 

 
4. HILBERT-HUANG TRANSFORM 
FEATURE EXTRACTION 

Hilbert-Huang transform was performed on segments 
of length 1024 samples of the HRV signals for the different 
three groups.  For each subject's heart rate time series, a 
sequence of amplitudes describing the time dependent 
magnitude of the intrinsic mode functions IMFs was 
obtained. Then the energy content [22] of each IMFs 
amplitude obtained by the Hilbert transform for each 
subject was calculated. 
 
5. STATISTICAL ANALYSIS OF 
FEATURES 

In this section, Hilbert-Huang transform features have 
been analyzed by means of variance (ANOVA) for 
repeated measures [23]. When the factor was significant 
(p 0.05), we further checked the significance of the 
differences between normal subjects and patients suffering 
from CHF and MI diseases. Results of ANOVA are shown 
as means  standard deviation in Fig. (5), Table -1. 

p

±
It has been found that only four coefficients from six 

are significant. Therefore, it is concluded that HHT able to 
discriminate between the three groups under investigation 
at 5% level of significance. 
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Figure 5: ANOVA results for features of Hilbert-Huang transform 
in normal subjects (NSR), congestive heart failure patients (CHF) 
and myocardial infarction patients (MI). (a-f) energy content of 
the first six IMFs amplitude obtained by Hilbert-Huang transform. 

 
 

Table -1: Significance for all empirical mode decomposition 
coefficients 

 

 
6. CONCLUSION 

This paper presents the application of the Hilbert-
Huang transform to the HRV records. The basis functions 
of the Hilbert-Huang transform is the empirical mode 
decomposition method. This decomposition has the 
advantage of automatically identifying the intrinsic time 
scales of the data, including the longest scale (i.e the longer 
period oscillations) defined by the full length of the series, 

Classes 

Normal Sinus 

Rhythm (NSR) 

Congestive 

Heart Failure 

(CHF) 

 

Myocardial  

Infarction (MI) 

 

 

 

 

 

 

 

 

Feature 

number 
Mean ± S.D Mean ± S.D Mean S.D ±

P-Value 

First  
9.227± 7.093 14.7103± 11.42 23.6922 17.826 ± 4.0645e-010 

Second 
7.464± 6.199 8.0182± 5.239 8.4737 6.333 ± 0.5610 (ns) 

Third 
7.968± 5.634 13.6310± 9.616 12.7130 10.492 ± 5.3244e-004 

Fourth 
16.57± 12.21 7.9703± 5.800 25.9521 20.044 ± 7.5147e-010 

Fifth 
8.631± 5.479 9.4781± 7.061 10.0134 7.798 ± 0.4384 (ns) 

Sixth  
6.698± 5.256 17.3000± 12.55 27.2767 22.087 ± 2.1172e-013 



without any presuppositions regarding the data's form. 
Hence, the components derived from the decomposition 
may carry actual physical significance. 

Given the described nature of HRV series data, the 
Hilbert-Huang transform is a suitable and attractive method 
of analysis. it may overcome the current difficulty of 
achieving strictly stationary conditions, be appropriate to 
reflect the non-linear contents of the data, and may allow 
the study of the frequency information carried by the series 
as a function of time. Therefore, the HRV records were 
first analysed as a sequence of amplitudes describing the 
time dependent magnitude of the intrinsic mode functions 
(IMFs) such as energy content of the first six IMFs 
amplitude obtained by the Hilbert transform for each 
subject. Then, features were statistically analyzed by 
plotting the mean and standard error for each parameter in 
each cardiovascular disease. Results from ANOVA test 
show that this new technique is very encouraging and very 
promising. It helps in discriminating between normal 
subjects and patients with low heart rate. 

In conclusion, the results of this paper suggest the use 
of the Hilbert-transform and the associated Hilbert spectral 
representation as powerful technique for HRV data time-
frequency analysis, owing to the possibility of dealing with 
non-stationary and non-linear embedded phenomena, and 
perhaps owing to its suitability for a proper assessment of 
the dynamic and transient changes in amplitude and in 
frequency of the HRV components. 
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