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Abstract- This paper proposes the use of Hilbert-
Huang transform (HHT) empirical noise model (EMD) to
the problem of non-stationary signals detection in under-
water sound. The design procedures for an adaptive model
of the background noise, using recursive density estima-
tion of the joint distribution of the multivariate vectors
of its Hilbert-Huang transform are described. Based on
the HHT, any input data can be decomposed into a small
number of intrinsic mode functions (IMFs) that can serve
as the basis of non-stationary data for they are complete,
almost orthogonal, local and adaptive. Discrete wavelet
transform (DWT) is another tool for processing transient
signals. From the computer simulation, based on the re-
ceiver operating characteristics (ROC), it shows that this
proposed EMD-based detector is better than the DWT-
based method.

I INTRODUCTION

The wavelet transform is an adjustable window Fourier spec-
tral analysis. Modifying the global representation of the
Fourier analysis enables wavelet to analyze the non-stationary
data. Based on a limited time window-width, various time-
frequency approaches have been developed to detect signal
underwater [1], [2], [3], [4], [5]. The necessary conditions for
the basis to represent a non-stationary signal are: complete,
orthogonal, local, and adaptive [6]. The locality and adaptive
condition are the most decisive criteria for non-stationary data.
By adapting to the local alteration of data, the processes of the
decomposition can fully explain the hidden physics of the sig-
nals. The authors of [6] and [7] developed a new data analyti-
cal method HHT, based on the empirical mode decomposition
(EMD), that a collection of intrinsic mode functions (IMFs)
can be generated. In a broadband stochastic situation such as
fractional Gaussian noise, the built-in adaptivity of EMD of
HHT acting as a ’wavelet-like’ dyadic filter bank was exam-
ined in [8]. An application of the EMD to identify the com-
ponents of the wave spectra was investigated by Veltcheva [9].
By noting that each IMF is a zero-mean AM-FM signal, the
Teager energy operator (TEO) can be used to track the energy
of each IMF to estimate the IF [10] and [11].

In this article, these IMFs decomposed by the HHT of the
non-stationary data are applied to an empirical model [2] to
identify transient signals underwater. The summary features of
these IMFs of underwater sounds appeared to exhibit distinc-
tive multivariate behavior when signals occurred. A period of
noise-only data is used to build an adaptive noise model of the
background continuum by density estimation of these IMFs
decomposed by the HHT. Observations considered to be out-
liers from this noise model at any time are then flagged as po-
tential signals. In this paper, a comparison of the performance
between the HHT-based model and the DWT-based method is
illustrated.

II HILBERT-HUANG TRANSFORM AND
INTRINSIC MODE FUNCTIONS

The Hilbert transform can make the data analytical and can
provide a unique way for defining the instantaneous frequency.
When x(t) = cos 2t with frequency f = 1/π ≈ 0.318Hz,
x(t) has a zero mean and it is symmetric with respect to the
zero mean. Its Hilbert transform is sin(2t) as in Fig. 1.
Hilbert-Huang transform (HHT) is a new method for analyz-
ing non-stationary signal [6]. Functions that satisfy the fol-
lowing two conditions are called intrinsic mode functions: (1)
the number of zero crossings and the number of extrema must
either equal or differ by one in the whole data set at most; and
(2) the mean value of the envelope defined by the local minima
and defined by the local maxima is zero at any point [6]. The
local mean of the envelopes defined by the local minima and
the local maxima is used to force the local symmetry instead.
With the definition of the zero crossings, the IMF involves only
one oscillation mode, excluding complex riding waves. With
this definition, an IMF can be either a narrow band signal or
non-stationary.

In most of the input data X(t), more than one oscillatory
mode is involved, and X(t) are not IMFs. The process to re-
duce the data into IMF components is designated as the empir-
ical mode decomposition (EMD) of the HHT [6]. This EMD is
illustrated in Fig. 2. All the local minima are linked by a cubic
spline as the lower envelope. For the local maxima, the up-
per envelope is produced. m1 is denoted as the mean of these
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Figure 1: The Hilbert transform of cos2t is sin2t.
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Figure 2: Illustration of the sifting process.

two envelopes. Two purposes of the sifting process are: (1)
to eliminate riding waves; and (2) to make the wave-profiles
more symmetrical [6].

As shown in Fig. 2, the wave h1 is still asymmetric and
it needs to be treated as the data and then take the the sifting
process until h1k is IMF. This IMF h1k is then designated as
the first IMF component of the data. The stopping criteria are
provided in [7], [9]. The shortest period content of the data
should be contained in c1. Separating c1 from the rest of the
data, we have the residue r1. By repeating the sifting process
on r1 and all the following rjs, the EMD of the HHT get

X(t) =
n∑

i=1

ci + rn. (1)

Then a decomposition of the input data into n IMFs and one
residue is achieved. The detail of the decomposition process is
presented in [6]. Let us examine the linear sum of three cosine
waves

x(t) = cos
2
10

πt + cos
2
20

πt + cos
2

200
πt, (2)

with the wave form in Fig. 3. The EMD of HHT has to be used
for the asymmetric wave form. The three IMF components
after applying the EMD are shown in Fig. 4.
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Figure 3: The summation of three distinct cosine waves:
x=x1+x2+x3.
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Figure 4: The EMD result showing three IMFs and a residue
for analytical signal x.

By applying the Hilbert transform to the IMFs which sifted
from the EMD of HHT, the instantaneous frequency of each
component can be computed. That the amplitude and the in-
stantaneous frequency are functions of time enable us to rep-
resent the data in a three-dimensional plot designated as the
Hilbert spectrum [6]. Considering an isolated sine wave and
treat it by the Hilbert spectral analysis. From the Hilbert spec-
trum as in Fig. 5, the energy of the calibration signal is highly
localized in both time and frequency domains.

III EMPIRICAL MODE DECOMPOSITION AND
SIGNAL DETECTION

Hilbert-Huang transform is a new method for analyzing non-
stationary signal [6]. Any input data can be decomposed into a
small number of intrinsic mode functions by using the empir-
ical mode decomposition (EMD). From the Hilbert transform
of the IMF, the instantaneous frequencies of the signal can be
given. Finally, the input data is presented by the Hilbert spec-
trum in an energy-frequency-time distribution. Because the
Hilbert transform can make the data analytical, it can provide
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Figure 5: A calibration of time localization of the Hilbert spec-
trum analysis.

a unique way for defining the instantaneous frequency. In or-
der to obtain a meaningful instantaneous frequency, some lim-
itations should be adopted on the data. Functions that satisfy
those restrictions are called intrinsic mode functions [6]: (1)
the number of zero crossings and the number of extrema must
either equal or differ by one in the whole data set at most; and
(2) the mean value of the envelope defined by the local minima
and defined by the local maxima is zero at any point.

At any given time, the input data X(t) are not IMF’s. More
than one oscillatory mode is involved in most of them. The
process to reduce the data into IMF components is designated
as the empirical mode decomposition (EMD) [6]. The decom-
position process starts with the envelopes constructed by the
local minima and maxima separately. Once the extrema are
found, all the local minima are linked by a cubic spline as the
lower envelope. For the local maxima, repeat the procedure
to produce the upper envelope. Then, all the data is covered
by the lower and upper envelopes. The mean of these two
envelopes is denoted as m1. The first component h1 is the dif-
ference between the data and m1. Two purposes of the sifting
process are: (1) to eliminate riding waves; and (2) to made
the wave-profiles more symmetrical [6]. Ideally, h1 should be
an intrinsic mode function. Although all the local minima are
negative and all the local maxima are positive, but wave h1 is
still asymmetric. Now h1 is treated as the data and then take
the the second sifting process: The sifting procedure has to
be repeated k times, until h1k is IMF. This IMF h1k is then
designated as the first IMF component of the data. The stop
of the sifting process is determined by the size of the standard
deviation SD:

SD =
T∑

t=0

[
|h1(k−1)(t) − h1k(t)|2

h2
1(k−1)(t)

]
, (3)

which computed from the two successive sifting results. Other
stopping criterions are provided in [7], [9]. The shortest period
content of the data should be contained in c1. Separated c1

from the rest of the data, we have the residue r1. The sifting
process then can be reprated on r1 and all the following rjs

and get

X(t) =
n∑

i=1

ci + rn. (4)

Then a decomposition of the input data into n IMF’s and one
residue is achieved. The detail of the decomposition process
is presented in [6]. The EMD is adaptive and highly efficient,
because it extracts IMF directly from the signal which associ-
ated with intrinsic time scales. For based on the local proper-
ties of the data, the EMD decomposition is applicable to non-
stationary processes.

The authors of [2] used an empirical model of the noise
for signal detection and found that summary features of dis-
crete wavelet transform (DWT) decompositions of underwa-
ter sounds appeared to exhibit distinctive multivariate behav-
ior when signals occurred. According to [2], underwater sound
recordings are divided into appropriate time ”window”. Subdi-
viding any given input data into periods of 0.743 second (with
each period containing 215 = 32768 data points). Each of
these 0.743 second segments split into 256 time windows with
a length of 128 samples is subjected to the DWT analysis. The
reconstructing details d1, ..., d5 of DWT in level 1 to level 5
covering the frequency ranges that are of interest in this case
(i.e. 1–20 kHz) are summarized in terms of four mean sums of
squares, (vt,1 , · · · , vt,5) for each time window t, so that

vt,j =

∑128
k=1 d2

j,k

128
, j = 1 , · · · , 5

where d2
j,k are taken from time window t. Focusing on three

mean sums of squares and forming a vector of multivariate
observation vt= (vt,3 , vt,4 , vt,5) in time window t. The be-
havior of these observations vt, t = 1, · · ·, 256 cover the range
1–5KHz. The joint behavior of these mean sums of squares of
noise is significantly different from that of signals. This result
suggests the usage of density estimates to establish the initial
density estimate of noise and then to detect the signal.

Inspired by this application and by noting that IMF’s can
serve as the basis of non-stationary data and this basis is com-
plete, almost orthogonal, local and adaptive, in this article,
these IMF’s of underwater sounds that are decomposed by the
EMD is applied to this method. IMF’s c1, c2, c3 of underwa-
ter sounds are summarized in terms of three mean sums of
squares, (vt,1 , vt,2 , vt,3) for each time window t, so that

vt,j =

∑128
k=1 c2

j,k

128
, j = 1 , 2 , 3,

where c2
j,k are taken from time window t. Focusing on these

mean sums of squares and forming a vector of multivariate
observation vt= (vt,1 , vt,2 , vt,3) in time window t. The joint
behavior of these mean sums of squares of noise is signifi-
cantly different from that of signals. Based on the receiver op-
erating characteristics (ROC), the following section will show
that these vectors of multivariate observations vt produced by
EMD can establish the initial density estimate of noise and get
a better detection performance then that proposed by DWT.
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Figure 6: ROCs for the EMD-based detector ’o’ and that of
the DWT-based detector ’x’.

IV EMPIRICAL MODEL AND COMPUTER
ANALYSIS

The authors of [2] suggested the usage of density estimates
[12] to establish the initial density estimate of noise and then
to detect the signal. The performance of the proposed EMD-
based detector is compared to the DWT-based method by using
the ROC curves in the following experiment. The empirical
mode decomposition (EMD) is first applied to an initial sam-
ple (32, 768 data points) taken from a sound recording con-
sisting of pure background noise without signals of interest.
The intrinsic mode functions (IMF’s) c1, c2, c3 decomposed
by the EMD are summarized in terms of three mean sums of
squares. Each one has 256 time windows. Density estimation
of the joint distribution of these summaries is used to obtain
an adaptive noise model of the background continuum and to
choose a threshold value η.

For every threshold value η, with the experiment repeated
256 times, the PD and the PF for that particular threshold value
can be evaluated. This experiment is run for several values of
the threshold value η, and the ROC of the EMD-based detector
by representing the PD as a function of the PF can be obtained
and is plotted in Fig. 6. A comparison of the ROC between the
EMD-based detector and the DWT-based method illustrated in
Fig. 6 shows that the proposed method is better than the DWT-
based detector if the PF is lower than 0.83.

V CONCLUSION

The empirical mode decomposition (EMD) is introduced to
the problem of signal detection in underwater sound. Based on
the EMD, any input data can be decomposed into a small num-
ber of intrinsic mode functions (IMF’s) which can serve as the
basis of non-stationary data for they are complete, almost or-
thogonal, local and adaptive. Based on the receiver operating
characteristics (ROC), it shows that this proposed EMD-based
detector is better than the DWT-based method.
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