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Abstract:  
The interest of Time-Frequency Representation (TFR) compared to time or frequency 
representations, is their ability to quantitatively resolve changes in the frequency content of 
nonstationary signals such as under water reflected acoustics signals. However, a limit of 
such TFRs is they produce, in some cases, representations that are meaningless or difficult to 
explain and to analyze. In this work two new TFRs based on the Empirical Mode 
Decomposition of Huang, called respectively Hilbert-Huang Transform (HHT) and Teager-
Huang Transform (THT) are investigated. The two TFRs are applied to analyze echo signals 
of cylindrical tube. Resulting TFRs are compared to that of Wigner-Ville distribution. Both 
HHT and THT give qualitatively and quantitatively better results than the Wigner-Ville 
distribution and the spectrogram in terms of pertinent and accuracy time-frequency features, 
used in targets classification.     
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1. INTRODUCTION  

Use of underwater sound for detecting and locating submerged targets was introduced 
more than 80 years ago. The problem of discrimination of immersed targets was initiated by 
Hoffman [1] who investigated time-domain approaches followed by Chesnut and Floyd who 
tested multiple frequencies based techniques [2]. Time-frequency (TF) approaches have also 
been used for target classification [3],[4] and have given high potentiality for discrimination 
between solid and hollow targets as well as for determining the target material [5]. For 
example in [5] a Wigner-Ville distribution (WVD) as a TF description is used. WVD has 
been shown to be a relevant for understanding of echo formation mechanisms and for surface 
waves that circumnavigate the targets [3],[4]. In [7] a Sonar target classification based on the 
TF projection filtering [8] has been proposed. The WVD associated to the Impulse response 
(IR) (acoustic response) of a Sonar target generates a TF plane (image) showing different 
patterns. These patterns can be classified into two categories 1) Interferences due to the 
bilinear nature of the WVD [6]. 2) High energy pattern: the first one, non dispersive, is 
associated with the specular echo on the target and the two following patterns correspond to 
the arrival of surfaces waves (antisymmetric Lamb waves) that circumnavigate the target [7]. 
The two pertinent patterns for classification are the specular reflection and the Lamb waves. 
The function of a TF filter is to extract from the signal to be analyzed the pertinent patterns. 
The filter is designed from the WVD of a reference signal and more particularly from its TF 
support R containing the relevant information. This region R is derived manually (isolation of 
the echoes by an expert operator). A limit of the WVD is the severe cross terms as indicated 
by the existence of negative power for some frequency ranges. Although most of these 
difficulties can be avoided by using proper kernel functions, the method is still Fourier based; 
therefore all complications associated with Fourier transform still exist. To circumvent this 
difficulty two new TF methods based both on the Empirical mode decomposition (EMD) of 
Huang [10] called Teager Huang Transform (THT) [9] and Hilbert Huang Transform (HHT) 
[10] are investigated to analyze IR of Sonar target. The EMD does not make any assumption 
about the stationnarity or the non-linearity of the analyzed signals, and avoids the interference 
problem of the WVD. The EMD decomposes a signal into oscillatory modes called Intrinsic 
Mode Functions (IMFs). The aim is to determine IMFs that characterize the Sonar target. In 
this paper we investigate the THT and HHT to analyze echoes signals scattered from 
cylindrical object. We examine their ability for characterising Lamb waves, which can 
propagate in the object. We compare the results of TF representations of HHT and THT to 
those of the WVD and spectrogram. 

2. EMD-BASED APPRAOCHES 

2.1. Hilbert-Huang Transform: 

This TFR is based on the EMD and the Hilbert transform (HT). The EMD is defined by an 
algorithm, called sifting process, which decomposes any time series to a set of IMFs that are 
conform to HT [10]. Using HT, IMFs produce IFs and Instantaneous Amplitudes (IAs). The 
resulting energy-TF representation, called HHT, is comparable to WVD. The interest of 
EMD based methods is that IMFs are derived from the signal itself. This means that no 
artificial basis functions are used and so the extracted IFs are physically meaningful. The 



 

EMD can be seen as a type of wavelet decomposition, whose sub-bands are built up as 
needed, to separate the different components of a signals(t ) . Each IMF replaces the signal 
detail, at a certain scale or frequency band [12]. The EMD picks out the highest frequency 
oscillation that remains ins(t ) . An IMF satisfies two conditions: 

1) Numbers of extrema, and of zeros crossings, may differ by no more than one;  
2)    Mean value of the envelope defined by the local maxima, and the envelope defined by 

the local minima, is zero. 

To be successfully decomposed into IMFs, s(t )  must has at least two extremas, one minimum 
and one maximum. The sifting is repeated in order to get a true IMF that fulfills conditions 
(1) and (2). The result is that s(t )will be decomposed into IMFs and a residual: 
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s(t)= IMF (t)+r (t)∑                                                                                                           (1) 

HT is applied to each IMF and associated analytic signal, as (t )  is formed. IF and IA of the 
IMF are given by 

( ) ( ) a
a a

a

d t s (t )1
f t a(t ) s (t ) s (t ) where (t ) arctan  

2 dt s (t )
 φ ℑ

= , = ℜ + ℑ     φ =  ℜ π
                         (2)                                                        

 
2.2. Teager Huang Transform: 
 
THT is a combination of the EMD and the Teager operator. This operator is applied to 

each IMF, ψ[IMF(t)] . To demodulate an IMF, the Energy Separation Algorithm (ESA) based 
on Teager operator is used [13]. ESA estimates the IF and the IA of s(t )as follows: 
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3. TFRs OF ECHOES FROM CYLINDRICAL SHELLS 
 

TFRs from echoes of cylindrical shells are presented. A tube characterized by a material and 
radius ratio b a ( a , outer radius; b  inner radius) is used. Usually specular echo is a broad 
band signal with high amplitude compared to Lamb waves. Since associated TFR is not easy 
to analyze, specular echo is cancelled before analysis. The tube of aluminium is immersed in 
water filled full of air with b a 0.95 , a 1cm= = . Sifting results of echo 1s (t )  is given in Fig. 1 
and the associated TFRs are shown in Figs. 2-5. These TFRs show that circumnavigate waves 
around and inside the tube are globally detected. However, for Smooth Pseudo WVD 
(SPWVD), these waves are not evidenced on the TF plan. Indeed, in SPWVD the filtering 
used for smoothing the representation could badly affect this last [6]. These waves can be 
recovered using convenient parameters which are in practice difficult to determine. As for 
SPWVD we can draw the same conclusions for spectrogram. TF features (Fig. 2) are not well 
evidenced. Except the time localisation, spectrogram features do not give pertinent 
information. In contrast HHT and THT give accuracy frequency values and represent 



 

correctly the circumnavigate waves in TF plan. More particularly, HHT reveals different laws 
frequency for each wave packet, corresponding to different IMFs of 1s (t ) . IMFs are shown in 
figure 1. The first one is noise dominant mode; its frequency is the highest one. IMFs are 
presented from the highest frequency mode to the lowest one. As can be seen in Figs. 6 and 7, 
a zooming region in time interval [1.54ms, 1.57ms] of both HHT and THT show different frequency 
laws, characterizing the echo. Figures 8 and 9 show spectrogram and SPWVD of signal 
echo, 2s (t ) , of steel tube with, a/b 0.97= , respectively. As for Figs. 2 and 3, these TFRs do 
not provide interesting features. Thus, good window parameters adapted to the analyzed 
signal are necessary to improve the resolution of these TFRs to get pertinent information. For 
HHT and THT this problem is systematically resolved by EMD which decomposes the signal 
with no a priori. From a zooming on HHT and THT in time interval [1.29ms, 1.37ms] one can 
observe different frequency laws corresponding to 2s (t ) . 

   
Fig.1: Sifting results of Results of signal, 1s (t ) , of tube of aluminium with a/b 0.94= . The signal 1s (t ) (left up in 
blue), IMF1-IMF12 (from the second line at left to the before last line right) and the residue (the last line, right) 

  
Fig.2: Spectrogram of signal 1s (t )  divided into segments 
equal to 64, with overlap of 32 and nfft of 128. 

Fig.3: SPWVD of 1s (t )  (filtering window is ‘Kaiser’, with 
larger 3 and 127 for time and frequency). 

  
Fig.4: HHT of scattering signal, 1s (t ) . Fig.5: THT of scattering signal, 1s (t ) . 



 

 

 

 

 
Fig.6: A zooming in 1.54ms to 1.57ms time interval on  HHT Fig.7: A zooming in 1.54ms to 1.57ms time interval on  THT 

  
Fig.8: Spectrogram of signal 2s (t )  divided into segments 

equal to 64, with overlap of 32 and nfft of 128. 
Fig.9: SP WVD of 2s (t )  (filtering window is ‘Kaiser’, with 

larger 3 and 127 for time and frequency). 

  
Fig.10: THT of scattering signal, 2s (t ) . Fig.11: THT of scattering signal, 2s (t ) . 



 

  
Fig.12: A zooming in 1.29ms to 1.37ms time interval on HHT Fig.13: A zooming in 1.29ms to 1.37ms time interval on  THT 
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