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ABSTRACT

In this paper an audio coding scheme based on the Empirical
Mode Decomposition (EMD) in association with the Hilbert
transform is presented. The audio signal is decomposed adap-
tively into intrinsic oscillatory components by EMD called
Intrinsic Mode Functions (IMFs) and the associated instan-
taneous amplitudes and the instantaneous phases calculated.
The basic principle of the proposed approach consists in en-
coding the instantaneous amplitudes and the instantaneous
phases. The decoder recovers the original signal after IMFs
reconstruction by demodulation, and their summation. The
compression method is applied to different audio signals, and
results compared to MP3 and to wavelet approaches.

1. INTRODUCTION

Audio signal compression of hight quality, and at low bit rate
has become very important in many applications, such as dig-
ital audio broadcasting, multimedia and satellite TV, that re-
quest a lower bit rates and high fidelity. Different coding
methods has been proposed for reducing the bit rate [1]-[2].
Furthermore, new methods of audio compression based on
wavelet have been proposed in to reduce bit rate requirements
[3]-[4]. However, a limit of the wavelet approach, is that the
basis functions are fixed, and thus do not necessarily match
all real signals. In this work we investigates the interest of the
EMD or Huang transform for audio encoding. The EMD has
been introduced by Huang et al. [5] for analyzing data from
non-stationary and nonlinear processes. The major advantage
of the EMD is that the basis functions are derived from the
signal itself. Hence, the analysis is adaptive in contrast to the
traditional methods where the basis functions are fixed. The
basic idea of the proposed method is to encode the instan-
taneous amplitude (IA) and the instantaneous phase (IP) for
each IMF, exploiting the smoothness of these instantaneous
quantities. This method is applied to audio signals, and the
results are compared to the wavelet and MP3 approaches.

2. HUANG TRANSFORM: EMD

The EMD breaks down any signalx(t) into a series of IMFs
through an iterative process calledsifting; each one with a dis-
tinct time scale [5]. The decomposition is based on the local
time scale ofx(t), and yields adaptive basis functions. The
EMD can be seen as a type of wavelet decomposition whose
subbands are built up as needful to separate the different com-
ponents ofx(t). Each IMF replaces the signals detail, at a cer-
tain scale or frequency band. The EMD picks out the highest
frequency oscillation that remains inx(t). By definition, an
IMF satisfies two conditions :

1. Number of extrema and the number of zeros crossings
may differ by no more than one.

2. Average value of the envelope defined by local maxima,
and the envelope defined by local minima, is zero.

Thus, locally, each IMF contains lower frequency oscillations
than the just extracted one. The EMD does not use a pre-
determined filter or a wavelet function, and is a fully data-
driven method [5]. To be successfully decomposed into IMFs,
the signalx(t) must have at least two extrema (one minimum
and one maximum). The IMFs are obtained using the follow-
ing algorithm (sifting process) [5]:

• identify all extrema ofx(t).
• interpolate between minima (resp. maxima), ending up

with some envelopeemin(t) (respemax(t)).
• compute the averagem(t) = (emin(t) + emax(t))/2.
• extract the detaild(t) = x(t) − m(t).
• iterate on the residualm(t).

Signald(t) is a true IMF, if it satisfies conditions (1) and (2).

3. ANALYTIC SIGNAL

With the Hilbert transform,H[.], the analytic signalz(t) cor-
responding tos(t) is given by :

z(t) = s(t) + iH[s(t)] = a(t)eiθ(t) (1)
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where the given time seriess(t) is the real part of (1), and the
imaginary part is the Hilbert transform ofs(t),

H[s(t)] =
1
π

PV
∫ −∞

+∞

s(τ)
t − τ

dτ (2)

PV is the Cauchy principal value of the integral. An analytic
signal represents a rotation in the complex plane with the ra-
dius of rotationa(t) and the IPθ(t), where

a(t) =
√

[s(t)]2 + H[s(t)]2 and θ(t) = tan−1

(
H[s(t)]

s(t)

)

The IA a(t) and IPθ(t) of IMFs of audio signal are slowly
varying, which is not true for general audio signals. The com-
bination of the EMD applied tos(t) to generate IMFs, and
the Hilbert transform of each IMF is called the Hilbert-Huang
Transform (HHT).

4. PROPOSED APPROACH

Compared to our recently published works [6],[7], where es-
sentially extrema are encoded, in the present work IA and
IP which are valuable pieces of information are exploited for
coding.

4.1. Segmentation

In the proposed method, the audio signal is first segmented
adaptively into frames where it remains quasi stationary within
each frame. This segmentation is based on the Local Entropic
Criterion (CEL) which is a non parametric detector. The CEL
at instantn for a signalx(n) is given by [8]:

CELx(n) =
Exc(n) − [Exl(n) + Exr(n)]

|Exc(n)| (3)

where Exc(n), Exl(n) and Exr(n) denotes the entropies of the
principal window and the left and right sub-windows respec-
tively.
Exc(n) = Ex[n−N

2 ,n+N
2 −1],

Exl(n) = Ex[n−N
2 ,n−1],

Exr(n) = Ex[n,n+N
2 −1].

Shannon entropy of a signalx(n) in the interval[0, N − 1],
Ex[0,N−1], is defined by :

Ex[0,N−1] = −
N−1∑
k=0

|X(k)|2 log |X(k)|2 (4)

whereX(k) is the discrete Fourier transform ofx(n). So the
CEL has a value in the range of -1 to 1. A transient in the
signal is characterized by a CEL> 0. An example of CEL
variations for an audio frame guitar is shown in figure 1.

4.2. HHT

After adaptive segmentation, each audio framex(t) is decom-
posed into sum of IMFs by the EMD, as follows:

x(t) =
L∑

j=1

IMFj(t) + rL(t) (5)

where IMFj(t) is thejth IMF andrL(t) is the residual. The
L value is determined automatically using standard deviation
SD as stopping criterion which usually is set between0.2 and
0.3 [5]. An example of decomposition of an audio frame is
illustrated in figure 2. For each IMF, IPθ(n) and the IAa(n),
are determined using Hilbert transform. Figure 3 shows the
IA and IP of an IMF.

4.3. Encoding

For class of audio signals studied, it is found that IA of IMFs
are correlated. An example of such correlations is shown in
figure 4. So, AR model is used to efficiently exploit this tem-
porally correlated information.

â(n) =
p∑

k=1

c(k)a(n − k) + ε(n) (6)

where[1, c(2), ..., c(p)] are the coefficients of the model and
ε(n) is stationary zero mean input sequence that is indepen-
dent of past outputs. Analysis of variation of IMFs IP show
that for coding the classical scalar quantization can be used.
Thus, only extrema of IP are encoded. Figure 5 shows the
extrema (red circles) of an IMF that are coded. This informa-
tion corresponds to encoding zero crossings of the imaginary
parts of IMFs. Finally, the encoded coefficients of the IA and
extrema of the IP is improved, by using lossless compression
such as Huffman or Lempel-Ziv encoding techniques to store
data. These techniques account for probability of occurrence
of encoded data to reduce the number of bits allocated to. Al-
though Lempel-Ziv is not optimum, the decoder does not re-
quire the encoding dictionary [9].

4.4. Decoding

The decoder requires only the encoded extrema of IP and cal-
culates the remaining phase values by linear interpolation. IA
is also generated by linear prediction. Finally, the estimated
IMF is calculated as follows:

ˆIMF(n) = |â(n)| cos(θ̂(n)) (7)

The audio frame is constructed by IMFs summation and the
decoded audio signal is obtained by frames concatenation.

5. RESULTS

The method is tested on different audio signals, sampled at
44.1 Khz. The results are compared to the MP3 et wavelet
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approaches. As criteria to evaluate the performance of the
method, Signal to Noise Ratio (SNR) and Compression Ratio
(CR), Subjective Difference Grade (SDG) and instantaneous
Perceptual Similarity Measure (PSMt) are used [10]. Due
to its good behavior for audio encoding, compared to other
wavelets, the Daubechies wavelet of order 8 is used [4]. Ta-
ble 1 shows the variation of TC and SDG against the number
of AR level. So, it is clear that order 9 represents a good
compromise between the TC and listening quality (SDG).

Table 1. Variations of the TC and the SDG over the AR order.

guitar violin sing
order TC SDG TC SDG TC SDG

5 13.40:1 -2.17 13.35:1 -2.87 16.43:1 -2.32
7 11.39:1 -1.08 11.72:1 -1.91 13.20:1 -1.12
9 10.15:1 -0.85 9.96:1 -1.09 11.30:1 -0.75

11 8.94:1 -0.83 8.70:1 -1.05 9.48:1 -0.73
13 8.14:1 -0.71 7.74:1 -1.01 8.31:1 -0.67
15 7.51:1 -0.63 7.01:1 -0.92 7.39:1 -0.51

Table 2, shows that the improvement in TC provided by the
proposed method varies from 9.96:1 to 11.3:1 than the TC
achieved by wavelets and MP3. Even for a sing signal, we still
can observe the effectiveness of the proposed method in com-
pression. A careful examination of the results reported in Ta-
ble 2, shows that the proposed approach performs remarkably
better than wavelet and MP3 methods. Furthermore, when
listening the decoded signal, the proposed method produces
lower noise compared to the wavelet method and MP3. This
result is shown in table 2, when we see the acquired SDG val-
ues depending to TC is better than the other methods. The
obtained results show the interest to encode both IA and IP.

Table 2. Compression results of audio signals (guitar, violin
and sing) by the proposed approach, MP3 and the wavelet.

Signal guitar violin sing

E
M

D Cr 10.15:1 9.96:1 11.3:1
SNR 20.27 20.41 22.86
SDG -0.85 -1.09 -0.75
PSMt 0.89 0.84 0.91

W
av

el
et Cr 9.42:1 9.83:1 10.11:1

SNR 20.17 19.65 23.43
SDG -1.51 -1.76 -1.94
PSMt 0.85 0.83 0.81

M
P

3 Cr 7.37:1 7.84:1 6.92:1
SNR 21.84 19.72 23.69
SDG -0.79 -1.05 -0.67
PSMt 0.92 0.86 0.96

6. CONCLUSION

In this paper, a new coding method combining Huang and
Hilbert transforms is presented. The estimated IP and IA of
the extracted IMFs are used for audio signals coding. Ob-
tained results for different audio signals show that the pro-
posed method, performs better than the wavelet and MP3 ap-
proaches, and confirm our previous findings [6],[7]. These
results also show the interest of the EMD as basis for signals
coding. To confirm the obtained results and the effectiveness
of the EMD-compression approach, the scheme must be eval-
uated with a large class of audio signals and in different ex-
perimental conditions, such as sampling rates, sample sizes.
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Fig. 1. CEL variation of the audio frame guitar.
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Fig. 2. Decomposition of an audio frame by EMD.
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Fig. 3. Instantaneous phase and instantaneous amplitude of
IMF3.
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Fig. 4. Autocorrelation function of instantaneous amplitude
of IMF3.
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Fig. 5. Instantaneous phase and their extrema of the IMF3.
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