
1 INTRODUCTION 

A better understanding of river flow fluctuations is of sharp practical importance, for 
ecosystem studies (transport properties), for flood understanding and forecasting etc. River 
flows fluctuate on many scales, see Figure 1: at small scales, river turbulence induces stochastic 
fluctuations and at larger scales (months or seasons) the river flow fluctuations are the result of 
complex nonlinear interactions between rainfall processes, topography evaporation and 
groundawater storage in the river basin. Daily river flow time series thus show fluctuations 
possessing stochastic properties, as well as deterministic forcing resulting from seasonal or 
annual meteorological and climatic cycles. Since Hurst (Hurst, 1950) introduced his famous R/S 
analysis, people have used different methods, for example, correlation analysis, wavelet 
analysis, detrended fluctuation analysis (Pandey et al. 1998, Hu et al. 2001, Koscielny-Bunde et 
al. 2006), etc. to characterize the long term memory effects and multifractal properties in the 
different records of river flow. 

Hilbert-Huang transform (or Empirical Mode Decomposition called by other authors) is a 
method built to deal with nonlinear and nonstationary time series (Huang et al. 1998, 1999, 
Flandrin and Gonçcalvès, 2004). In this paper, we will present an extended version of Hilbert 
spectral analysis, namely arbitrary order Hilbert spectral analysis, which can reduce the 
nonstationary and nonlinear effects, to characterize the intermittency properties of Seine river 
flow discharge time series. 

2 THE DATA: FLOW DISCHARGE OF SEINE RIVER 

Seine river is the third biggest river in France. The flow data is provided by the Service de 
Navigation de la Seine (SNS). This corresponds to daily flow data Q  (in m3/s), recorded from 
1 January 1976 to 28 April 2008. There are 11,828 data values, with some missing values due to 
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some interruptions, for maintenance or because of the failure of measuring devices. The data are 
displayed in Figure 1, showing some large fluctuations at all scales. The mean and standard 
deviation of the discharge are 488m3/s and 349m3/s. These illustrate the complex and stochastic 
behavior, with a visible strong annual cycle. 

 

 

3 METHODS 

3.1 Hilbert-Huang Transform 
Hilbert-Huang transform is a new method to analyze nonlinear and nonstationary time series, 

which was developed and proposed by N.E. Huang (Huang et al. 1998, 1999). It contains the 
following two steps: Empirical Mode Decomposition (EMD) and Hilbert Spectral Analysis 
(HSA). The starting point of its first step, EMD, is to consider the real time series as multi-
components at a very local level, and only mono-component signal has clearly physical meaning 
and well-behaved Hilbert transform properties. Then Intrinsic Mode Function (hereafter IMF) is 
used to approximate the mono-component signal, which describes as: a) the number of extrema 
and zero-crossing must equal or at most differ by one, b) at any point, the mean value of 
envelopes defined by the local maxima and the local minima is zero. EMD algorithm is then 
proposed to extract these IMFs 

1 The local extrema of the signal ( )x t  are identified, 
2 The local maxima are connected together forming an upper envelope max ( )e t , which is 

obtained by a cubic spline interpolation. The same is done for local minima, providing a 
lower envelope min ( )e t , 

3 The mean is defined as 1 max min( ) ( ( ) ( )) / 2m t e t e t= + , 
4 The mean is subtracted from the signal, providing the local detail 1 1( ) ( ) ( )h t x t m t= − , 
5 The component 1( )h t  is then examined to check whether it satisfies the conditions to be an 

IMF. If yes, it is considered as the first IMF and denoted 1 1( ) ( )C t h t= . It is subtracted 
from the original signal and the first residual, 1 1( ) ( ) ( )r t x t C t= −  is taken as the new series 
in step 1. If 1( )h t  is not an IMF, a procedure called “sifting process” is applied as many 
times as needed to obtain an IMF. In the sifting process, 1( )h t  is considered as the new 
data, the local extrema are estimated, lower and upper envelopes are formed and their 
mean is denoted 11( )m t . This mean is subtracted from 1( )h t  providing 

11 1 11( ) ( ) ( )h t h t m t= − . Then it is checked whether 11( )h t  is an IMF. If not, the sifting 
process is repeated, until the component 1 ( )kh t  satisfies the IMF conditions. Then the first 
IMF is 1 1( ) ( )kC t h t=  and the residual 1 1( ) ( ) ( )r t x t C t= −  is taken as the new series in step 
1. 

In practice the above shifting process should be given some proper stoppage criteria, which will 
guarantee to extract the components with more physical meaning, see Huang et al. (1998, 1999). 

Figure 1. The river flow discharge time series of Seine river, illustrating a clear annual cycle with huge
turbulence-like fluctuations at smaller scales.



After decomposition, the original time series can be represented as superposing by IMFs with 
one residual: 
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In its second step, Hilbert spectra analysis (Cohen 1995, Long et al. 1995, Huang et al. 1998), 
is applied to each IMF: 
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where P  means the principle value. Then we can have an analytic signal: 
( )( ) ( ) ( ) ( ) ij tA H

i i i iC t C t jC t A t e θ= + =                                       (3) 

where the amplitude ( )iA t  and phase function ( )i tθ  are defined as 2 2 1/2( ( ) ( ))H
i iC t C t+  and 

1tan ( ( ) / ( ))A
i iC t C t− , respectively. The original signal is finally represented as: 
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where RP  means real part and ( )i tω  is the instantaneous frequency, which is written as 
( ) /id t dtθ . Comparison with the Fourier transform, equation (4) can be regarded as a 

generalization of Fourier transform: it allows a frequency and amplitude-modulation 
simultaneously (Huang et al. 1998, 1999). Hilbert spectrum is therefore defined as the square 
amplitude 2( , ) ( , )H t A tω ω= , which represents the original signal in energy-time-frequency 
space at very local level. Hilbert marginal spectrum is also defined as: 

0

( ) ( , )h H t dtω ω
∞

= ∫                                                     (5) 

It is analogous to the FFT power spectrum (Huang et al.1998). 
It has been shown that Hilbert-Huang transform is robust with different stopping criteria 

(Huang et al. 2003). We then just summarize here some advantages of the present method. (1) 
completely self-adaptiveness or fully data-driven, there is no basis assumptions before the 
decomposition, (2) very local ability, in other words there is no uncertainty principle limitation, 
(3) intuitive, see (Huang et al. 1998, 1999, 2003, Flandrin and Gonçcalvès, 2004). Since its 
introduction, this method has attracted a large interest. It was shown to be an efficient method to 
separate a signal into a trend and small scale fluctuations on a dyadic bank (Wu and Huang, 
2004, Flandrin and Gonçcalvès, 2004), it has also been applied to many different fields (Jánosi 
and Müller, 2005, Loutridis, 2005, Solé et al. 2007, Schmitt et al. 2007, Su et al. 2008). 

3.2 Arbitrary Order Hilbert Spectral Analysis 
Since the Hilbert spectrum provides very local level representation of the original signal, we 
then can define the joint probability density function (pdf) ( , )p Aω  of frequency [ ( )]i tω  and 
amplitude [ ( )]iA t  (Long et al. 1995), which are extracted from all modes 1i N= L  together. 
The Hilbert marginal spectrum is then rewritten as: 
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One can find that the above definition is just a second statistical moment. We then naturally 
generalize equation (6) into arbitrary order one, which is written as: 

L(ω) = p(ω,A)AqdA
0

∞

∫ ≈ω−ξ (q )                                         (7) 



Where 0q ≥ , and ( )qξ  is the corresponding scaling exponents in amplitude frequency space, 
if the scale invariant is hold in the original time series. Equation (7) therefore provides an 
alternative way to extract the scaling exponents. 
 

 

4 RESULTS AND DISCUSSIONS 

We compare the Hilbert marginal spectrum and Fourier spectrum in Figure 2. Both of them 
capture the annual cycle and show power law behaviour on range 6 <ω < 80  year−1 or from 
 4.5−60  days, with scaling exponent 2.54 and 2.74 respectively. Since we are concerned with 
the scaling properties in the above range, we then divided the entire time series into 16 
segments, each one has 2×365 points, 2 years each. The arbitrary order Hilbert marginal spectra 
are shown in Figure 3, where q = 0, 1, 3, 4, 5 and 6. Power law behaviour is observed in all 
cases on range  6 <ω < 80  year−1. The corresponding scaling exponents ( )qξ  are estimated on this 
range by using least square fitting with 95% confidence limit. We then show the scaling 
exponents  ( )qξ  (circle) in Figure 4. The curve is concave, which indicates the multifractal 
properties of the river flow discharge. For comparison, we also show a reference line qH with 
H = ξ(1) −1= 0.84  (solid line). We also display the departure from this reference in insert, the 
shape is similar to turbulent ones (Frisch, 1995, Benzi et al. 1995). 

EMD decomposes the original time series into different scales directly. Both EMD and HSA 
have very local ability. Therefore the arbitrary order Hilbert spectral analysis measures the scale 
invariant properties in a quite elegant way. They can constrain the nonlinear and nonstationary 
effects both in real space and frequency space. 

Figure 2. Comparison of the Hilbert marginal spectrum (circle) and Fourier spectrum (solid line). Power
law behavior is observed on range  6 <ω < 80  year−1, or 4.5− 60  days, which is marked by the vertical
dash-dot lines. The scaling exponent values are 2.54 and 2.74 for Hilbert spectrum and Fourier spectrum
respectively.  



We want emphasize some points on the sample size here. The total length of the data is 
111828 points. It is a large database, but may not be sufficiently large to ensure the statistical 
convergence of higher order moments. However, we observed the power law behavior even in 
order six here. Of course the scaling exponents will fluctuate slightly with the sample size. But 
the shape/trend of the scaling exponents shall not be modified. 

 

 

5 CONCLUSION 

In this work we have prsented the analysis of a long (32 years) time series of daily river flow 
data, recorded in the Seine River (France). We applied a new data analysis technique coming 
from turbulence studies and time series analysis, namely arbitrary order Hilbert spectral 
analysis. It is an extended version of the Hilbert-Huang transform we developed in order to 
detecting the intermittency effects to study the intermittency. This new method estimates the 
scale invariant directly by calculating the arbitrary order Hilbert marginal spectra, the marginal 
moments of the joint pdf ( , )p Aω . Power law behaviour is then observed in the first six order 
arbitrary order Hilbert marginal spectra on range 4.5−60  days. The shape/trend of the scaling 
exponents we estimated here is similar with the turbulent ones for small scales, and confirm the 
multifractal nature of the river flow discharge. 

Figure 3. Arbitrary order Hilbert marginal amplitude spectra, q = 0, 1, 3, 4, 5 and 6. Power law is 
observed in all cases on range  6 <ω < 80  year−1. The vertical dash lines indicate the power law 
range. The corresponding scaling value are shown in each figure. 
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