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Abstract. Empirical mode decomposition (EMD) is an algorithm for
signal analysis recently introduced by Huang. It is a completely data-
driven non-linear method for the decomposition of a signal into AM -
FM components. In this paper two new EMD-based methods for the
analysis and classification of pathological voices are presented. They are
applied to speech signals corresponding to real and simulated sustained
vowels. We first introduce a method that allows the robust extraction
of the fundamental frequency of sustained vowels. Its determination is
crucial for pathological voice analysis and diagnosis. This new method
is based on the ensemble empirical mode decomposition (EEMD) algo-
rithm and its performance is compared with others from the state of
the art. As a second EMD-based tool, we explore spectral properties
of the intrinsic mode functions and apply them to the classification of
normal and pathological sustained vowels. We show that just using a ba-
sic pattern classification algorithm, the selected spectral features of only
three modes are enough to discriminate between normal and pathological
voices.

1 Introduction

Empirical Mode Decomposition (EMD) has been recently proposed by
Huang et al. [1] to adaptively decompose nonlinear and non stationary
signals in a sum of well-behaved AM-FM components, called Intrinsic
Mode Functions (IMFs). This new technique has received the attention
of the scientific community, both in applications [2,3] and in its interpre-
tation [4,5]. The method consists in a local and fully data-driven splitting
of a signal, in fast and slow oscillations. The advantage of an AM-FM
resonance model of speech was previously discussed in [6], where using
a Gabor filter bank with six fixed band pass filters, nonlinear features
were extracted for instantaneous frequency estimation, phoneme clas-
sification, and automatic speech recognition. In this work, we propose
two new methods based on EMD (and its variants) with focus in two
pathological voice applications: differential diagnosis and fundamental
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frequency extraction. Preliminary versions of these algorithms were pre-
sented in [7,8,9].
The fundamental period 𝑇0 of a voiced speech signal can be defined
as the elapsed time between two successive laryngeal pulses, and the
fundamental frequency or pitch is 𝐹0 = 1/𝑇0 [10]. Even if 𝐹0 is useful for
a wide range of applications, its reliable estimation is still considered one
of the most difficult tasks. In speech, 𝐹0 variations contribute to prosody,
and in tonal languages, they also help to distinguish segmental categories.
Current applications are related with speech and speaker recognition,
speech based emotions classifications, voice morphing and the analysis
of pathological voices.
In the clinical evaluation of disordered voices, the analysis of 𝐹0 pertur-
bation is a standard procedure in order to assess the severity of patholo-
gies and in monitoring the patient progress [11]. A reliable and accurate
estimation of 𝐹0 is essential for this application. Conventional 𝐹0 extrac-
tion algorithms assume that speech is produced by a linear system and
that speech signals are locally stationary [10]. However, in the case of
pathological voices, these assumptions are over-simplifications.
In voice pathology assessment, several parameters extracted from pitch
estimation are commonly used. It is therefore important to have a good
and reliable 𝐹0 estimation. Unfortunately, no previous method for 𝐹0

extraction operates consistently in the case of pathological voices. This
is due to the fact that the vocal folds vibrations of pathological voices
present more serious and complex irregularities than the case of normal
voices. Some of the difficulties that arise in 𝐹0 estimation, especially when
pathological voices are analyzed, include period-doubling and period-
halving.
A few EMD based algorithms have been proposed for 𝐹0 extraction
[12,13], however they suffer the “mode mixing” problem. Wu and Huang
[14] proposed a modification of the EMD algorithm, called Ensemble
EMD (EEMD), which largely alleviates this effect, but at the price of a
very high computational cost. Taking advantage of its benefits, here we
present a new method based on EEMD which is able to extract the 𝐹0

in normal and pathological sustained vowels, improving the behavior of
the previous estimators.
In the present paper, we also explore some spectral properties of the
IMFs. The comparison of real data IMFs spectra allows us to present
preliminary results of an application of this method to the analysis and
discrimination between normal and pathological speech signals.
We study a couple of dysphonias with different etiology [15], frequently
confused and not easily identified by local clinicians: Adductor Spas-
modic Dysphonia (AdSD) and Muscular Tension Dysphonia (MTD).
In recent years, the use of acoustical measures, in combination with
pattern recognition techniques, has motivated the appearance of several
works concerning the automatic discrimination between pathological and
normal voices. In [16], a database with 89 records of the sustained vowel
/a/ corresponding to normal and pathological (MTD and AdSD) cases
were separated into three classes with a 93.26 % of correct classifications,
and into two classes (normal and pathological) reaching a 98.94 %, over-
coming the best reported results in the literature. The authors used a
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pattern recognition scheme with eight acoustical parameters and neural
networks. In this paper we show that the spectral properties of the IMFs
could be useful to discriminate between normal and pathological voices.
These preliminary results suggest that they might provide also clues in
order to differentiate between AdSD and MTD.

The paper is organized as follows. In Sec. 2 the data used for the experi-
ments and basic concepts to be used are described. In Sec. 3 the EEMD
based 𝐹0 extraction method is presented. In Sect. 4 the pathological
voice classification problem is stated and a method based on EMD is
described. In Sect. 5 the results for both methods are shown. Finally, in
Sec. 6 the discussion and conclusions are presented.

2 Materials and Methods

2.1 Artificial Data

In order to explore the performances of the proposed techniques, exper-
iments were performed with synthetic normal and pathological voices.
These signals have been generated using a phonation model that in-
corporates the perturbations involved in normal voices and in common
laryngeal pathologies. This allowed us to maintain controlled experimen-
tal conditions, making possible the discussion of the technique and the
selection of the appropriate parameters.

The speech signal 𝑦[𝑛] was modeled using the classical linear prediction
model 𝑦[𝑛] = −∑𝑃

𝑝=1 𝑦[𝑛− 𝑝]𝑎[𝑝] + 𝑥[𝑛], where 𝑎[𝑝] are the linear pre-
dictor coefficients, and 𝑥[𝑛] is the input representing the glottal pulses.
The input is modeled by a train of pulses, with variable period and am-
plitude:

𝑥[𝑛] =
𝐾∑

𝑘=1

𝐺[𝑘] 𝛿

[
𝑛−

𝑘∑
𝑖=1

𝑃 [𝑖]

]
,

where 𝐺[𝑘] are the corresponding gain coefficients and 𝑃 the periods’
values. Different stochastic models for jitter and shimmer have been pro-
posed in the literature. In this work we assume, for a pulse train with a
jitter 𝑗𝑖𝑡𝑡%, a normal probability distribution for each period 𝑃 :

𝑝𝑑𝑓 (𝑃 [𝑘]) =
1

𝜎𝑃

√
2𝜋

exp

(
− (𝑃 [𝑘]− 𝑃0)

2

2𝜎2
𝑃

)
,

where 𝑃0 is the mean period and 𝜎𝑃 = 𝑃0 𝑗𝑖𝑡𝑡%
200

. In order to avoid period
approximation problems, a uniform randomized roundness function and
a sampling frequency of 50 KHz have been used.

In a similar way, the gain coefficients distribution is given by:

𝑝𝑑𝑓 (𝐺[𝑘]) =
1

𝜎𝐺

√
2𝜋

exp

(
− (𝐺[𝑘]− 1)2

2𝜎2
𝐺

)
.

Four hundred signals were synthesized, 100 corresponding to male and
100 to female, for each group of normal and pathological voices. For
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each situation, the model parameters were obtained from the statis-
tics of real signals, adopting a fundamental frequency with a distribu-
tion 𝒩 (144, 22.5) for male voices and 𝒩 (245, 24.5) for female voices; a
𝒩 (0.4, 0.1) jitter distribution for normal voices and 𝒩 (5, 1) for patho-
logical voices; and a shimmer with distribution 𝒩 (1, 0.2) and 𝒩 (8, 1)
respectively.

2.2 Real Data

The implementation of the method proposed for estimation of 𝐹0 was
analyzed using a database of vowel signals from 710 persons of both gen-
ders [17]. It includes sustained phonation of the vowel /a/ of 53 healthy
individuals and patients with a wide variety of voice disorders (organic,
neurological, traumatic and psychogenic). The healthy voices belong to
21 males and 32 females, with mean ages 38.81 ± 8.49 and 34.16 ± 7.87
years, respectively. The set of 657 pathological voices contains samples of
169 male speakers, 238 female speakers and 247 without data about gen-
der. The average ages are 49.80±17.46 years for males and 46.83±17.41
years for females. Some of the present disorders are adductor and ab-
ductor spasmodic dysphonia, A-P squeezing, cysts, erythema, gastric re-
flux,granulation tissue, hyperfunction, interaytenoid hyperplasia, kerato-
sis / leukoplakia, paralysis, polypoid degeneration, scarring, ventricular
compression, vocal fold edema, vocal fold edema, vocal fold polyp, vocal
tremor, and others. In this database, the average fundamental frequency
of normal voices is between 120.39 and 316.50 Hz.
For voice classification experiments a corpus of sustained vowels /a/
was used. The speech utterances from this corpus were registered in an
anechoic room (global reverberation time < 30 msec.). Each subject was
requested to phonate the sustained vowels as steadily as possible toward
an electrodynamic unidirectional microphone Shure SM58 at a distance
of about 15 cm from the mouth. Each vowel had a duration of 1 to 5 sec.
The data was digitized with a professional Turtle Beach Multisound FIJI
sound card, at 44 KHz, 16 bits and no compression was used. Later, the
data was low-pass filtered and down-sampled to 22 KHz. All the voices
were classified by an experienced voice pathologist. It was considered
a first set of 106 voices (half normal and half of diverse pathologies,
randomly selected from a larger data base), here named Data Base DB1,
and a second one of 14 normal voices, 13 of AdSD, and 6 of MTD, here
named Data Base DB2.
Here it is important to point out that patients affected with AdSD may
attempt to prevent their symptoms by increasing the tension in their
laryngeal muscles in an effort to compensate their disease signs. The
consequence is the appearance of additional physical disturbances simi-
lar to MTD along with AdSD. The over-riding symptoms of MTD can
escalate over time making difficult to discern the underlying symptoms
of AdSD [18].

2.3 EMD and EEMD

As it was stated in Sec. 1, EMD decomposes a signal 𝑥(𝑡) into a (usually)
small number of IMFs. IMFs must satisfy two conditions: (i) the number
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Fig. 1. A sustained real vowel /a/ corresponding to a normal subject, analyzed by
EMD (left column) and EEMD (right column). The corresponding IMFs 2 to 5 are
shown. In IMFs 4 and 5 corresponding to EMD two segments where “mode mixing”
occurs, are marked with circles.

of extrema and the number of zero crossings must either be equal or
differ at most by one; and (ii) at any point, the mean value of the upper
and lower envelopes is zero.

Given a signal 𝑥(𝑡), the non-linear EMD algorithm, as proposed in [1],
is described by the following algorithm:

1. find all extrema of 𝑥(𝑡),

2. interpolate between minima (maxima), obtaining the envelope 𝑒𝑚𝑖𝑛(𝑡)
(𝑒𝑚𝑎𝑥 (𝑡)),

3. compute the local mean 𝑚(𝑡) = (𝑒𝑚𝑖𝑛(𝑡) + 𝑒𝑚𝑎𝑥(𝑡)) /2,

4. extract the IMF candidate 𝑑(𝑡) = 𝑥(𝑡)−𝑚(𝑡),

5. check the properties of 𝑑(𝑡):

– if 𝑑(𝑡) is not an IMF, replace 𝑥(𝑡) with 𝑑(𝑡) and go to step 1,

– if 𝑑(𝑡) is an IMF, evaluate 𝑟(𝑡) = 𝑥(𝑡)− 𝑑(𝑡),

6. repeat the steps 1 to 5 by sifting the residual signal 𝑟(𝑡). The sifting
process ends when the residue satisfies a predefined stopping crite-
rion [4].

As already pointed out, one of the most significant EMD drawbacks for
some applications is the so called mode mixing. It is illustrated in the
left column of Fig. 1, where 60 ms of a sustained vowel /a/ are analyzed
by EMD. The four IMFs with higher energy are shown. The appearance
of oscillations of notoriously disparate scales in IMF 2 is clear. Another
example can be seen in IMF 5, where oscillations are marked with circles.
These oscillations are very similar to those marked on IMF 4.

si
nc

(i
) 

R
es

ea
rc

h 
C

en
te

r 
fo

r 
Si

gn
al

s,
 S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

G
. S

ch
lo

tth
au

er
, M

. E
. T

or
re

s 
&

 H
. L

. R
uf

in
er

; "
Pa

th
ol

og
ic

al
 V

oi
ce

 A
na

ly
si

s 
an

d 
C

la
ss

if
ic

at
io

n 
B

as
ed

 o
n 

E
m

pi
ri

ca
l M

od
e 

D
ec

om
po

si
tio

n"
D

ev
el

op
m

en
t o

f 
M

ul
tim

od
al

 I
nt

er
fa

ce
s:

 A
ct

iv
e 

L
is

te
ni

ng
 a

nd
 S

yn
ch

ro
ny

, V
ol

. 5
96

7,
 p

p.
 3

64
–-

38
1,

 2
01

0.



0 10 20 30 40 50 60
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Time (ms)

A
m

p
lit

u
d
e

0 200 400 600 800 1000 1200 1400 1600 1800 2000

-120

-100

-80

-60

-40

-20

Frequency (Hz)

P
o
w

e
r/

F
re

q
u
e
n
c
y
 (

d
B

/H
z
)

a)

b)

 F
0
=216.5 Hz

Fig. 2. a) A sustained real vowel /a/ corresponding to a normal subject (blue) and
IMF 5, obtained by EEMD (red). b) PSD estimates of the sustained vowel /a/ (blue)
and its EEMD based IMF 5 (red). The peak of the spectrum of the IMF 5 is marked
as 𝐹0 = 216.5 Hz.

EEMD5, is an extension of the previously described EMD. It defines the
true IMF components as the mean of certain ensemble of trials, each
obtained by adding white noise of finite variance to the original signal.
This method alleviates the mode mixing of the EMD algorithm [14].
An example of the EEMD abilities can be seen in the right column of
Fig. 1. An ensemble size of 𝑁𝑒 = 5000 was used, and the added white
noise in each ensemble member had a standard deviation of 𝜖 = 0.2. In
general a few hundred of ensemble members provide good results [14].
The remaining noise, defined as the difference between the original signal
and the sum of the IMFs obtained by EEMD, has a standard deviation
𝜖𝑟 = 𝜖/𝑁𝑒. For a complete discussion about the number of ensemble
members and noise standard deviation, we refer to [14]. The IMFs 2 to
5 are shown in the right column of Fig. 1, below the sustained vowel
/a/. The IMFs obtained by EEMD seem to be much more regular than
the EMD version and, additionally, we can appreciate that in IMF 5 the
oscillations capture the fundamental period of the sustained /a/.

This fact is remarked in Fig. 2.a, where the sustained vowel /a/ is pic-
tured and the EEMD related IMF 5 is superimposed in a red line. In Fig.
2.b the power spectral densities (PSD) of /a/ and IMF 5 are plotted. The
PSD of IMF 5 has a well defined peak in the frequency 𝐹 = 216.5 Hz,
which can be understood as a mean fundamental frequency. A visual
inspection of the waveform (Fig. 2.a) allows the estimation of the funda-

5 Matlab software available at http://rcada.ncu.edu.tw/.
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Fig. 3. 𝐹0 average over the 53 analyzed sustained real vowels corresponding to normal
subjects. Circles (red), stars (blue) and diamonds (black) indicate the signals in which
𝐹0 was found in modes 5, 6 and 7 respectively.

mental frequency as close to 200 Hz, what is in agreement with the PSD
of IMF 5.

3 Instantaneous Frequency Extraction

In this section we present and discuss the main ideas of the algorithm,
based on EEMD, for the extraction of 𝐹0.

Once the EEMD is computed, we want to identify the mode in which
𝐹0 stands almost alone. With this in mind, a visual inspection of the
decomposition of the normal voices in our database, allows to identify
the candidate mode, as can be appreciated observing the second column
in Fig. 1 and Fig. 2.a. Clearly 𝐹0 is present in modes 3, 4 and 5. In the two
first ones it is mixed with other components of the original signal, but
it appears alone in the last one. This fact is reinforced by the sinusoidal
like waveform of IMF5.

In our 53 samples of normal voices, 𝐹0 was found in the IMFs 5, 6 and
7. Only in two cases it has been found in IMF 7, with average values
of 120.394 Hz and 121.102 Hz, while in nineteen cases it was found in
IMF 6, with average values in between 121.652 Hz and 189.295 Hz. In
the remaining 32 voice, 𝐹0 was found in IMF 5 with average values in
between 193.934 Hz and 316.504 Hz.

Fig. 3 shows the average values of the instantaneous frequencies obtained
from the modes identified by visual inspection in each normal voice in our
database. In red circles are indicated those voices whose 𝐹0 was identified
at mode 5, while the blue stars and the black diamonds indicate those
cases corresponding to an identification in modes 6 and 7 respectively. It
can be appreciated that it exists a relationship between the 𝐹0 average
value and the mode in which 𝐹0 has been identified. This is consistent
with the results of Flandrin et al.[19]. They showed that, when applied
to white noise, the EMD acts as an adaptive dyadic filter bank.

In order to obtain an automatic method to select the mode in which 𝐹0

is hidden, we explore the discrimination abilities of the Shannon entropy
in the present context. In the discrete case, it is defined as: 𝐻(𝑥) =
−∑𝑀

𝑖=1 𝑝𝑖 log (𝑝𝑖), with the understanding that 𝑝 log(𝑝) = 0 if 𝑝 = 0,
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Fig. 4. a, b) Discrete entropies of modes 1 to 10 for the sustained real normal vowels
/a/ at which 𝐹0 was found in modes 5 and 6, respectively. c, d) Differential entropies
of modes 1 to 10 for the sustained real normal vowels /a/ for which 𝐹0 was found in
modes 5 and 6, respectively.

where 𝑝𝑖 is the probability that the signal 𝑥 belongs to a considered
interval and 𝑀 is the partitions number [20].
Fig. 4.a displays the boxplots of the Shannon discrete entropy (H) corre-
sponding to the ten first modes of the sustained normal vowels for which
𝐹0 was found in mode 5.
In Fig. 4.b are shown those voices for which 𝐹0 was found in mode 6. The
histogram-based discrete entropy was estimated with 500 bins. It can be
appreciated that the first mode has average entropy lower than for the
other four or five modes (Figs.4.a and 4.b, respectively.) This is consistent
with the fact that the first mode mainly contains high frequency noise:
the one added to the original voices to perform the EEMD.
It can be observed that, for those voices for which 𝐹0 is in IMF 5, the
entropy has a jump after this mode, while a similar jump is observed in
the 6th mode for those voices in which the fundamental frequency was
found in IMF 6. There is however an overlap, which does not appear
if we use an estimate of the differential entropy (DH) [21] instead of
the discrete one. DH was estimated using a smoothing Gaussian kernel
probability density estimation with 500 equally spaced points that cover
the range of each IMF [21].
The results shown in Figs. 4.c and 4.d correspond to the differential
entropy of those voices for which the fundamental frequency was found
in modes 5 and 6. It should be noted here that in the case of the normal
voices, the IMFs obtained through the EEMD have sinusoidal shapes and
their probability density functions are also similar to a sinusoidal pdf.
Therefore, if we remember that the differential entropy of a sinusoidal
of amplitude 𝐴 is given by 𝐷𝐻 = ln (𝜋𝐴/2), it would be reasonable to
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centered at Fmean

END

Find F0 using

DESA-1

Fig. 5. Flow diagram corresponding to the full 𝐹0 extraction method based on EEMD.

propose the logarithm of the power of the IMFs as an index to find the
mode where 𝐹0 is hidden. This idea will be addressed in future works.
Taking into account these results, for modes 𝑚 = 5, 6 and 7, we can
propose thresholds 𝑇5, 𝑇6 and 𝑇7 such that:−3.365 < 𝑇5 < −3.234,
−4.224 < 𝑇6 < −3.433 and −5.762 < 𝑇7 < −4.172. In this way, given a
voice, if its DH corresponding to mode 5 is higher than 𝑇5 and its DH
corresponding to mode 6 is lower than 𝑇5, it could be expected its 𝐹0

would be hidden in mode 5. If this is not the case, the presence of a jump
in between modes 6 and 7 should have to be tested using threshold 𝑇6,
and afterwards in between modes 7 and 8 by means of threshold 𝑇7. This
hypothesis should have to be tested on a larger data base, which is right
now not available. This would allow setting more accurate thresholds.
Once the mode where it is expected to find 𝐹0 is selected, spurious com-
ponents must be eliminated. For this task we adopt a type II Chebyshev
bandpass filter, with a bandwith of 150 Hz and centered on the fre-
quency corresponding to the maximum of the spectrum of the selected
mode. This frequency is a good approximation of the average value of
𝐹0, as shown in Fig. 2.b. At this point, an AM-FM separation algo-
rithm must be applied. The DESA-1 [22] provides us better results than
Hilbert-Transform based methods, as reported in [23]. The flow diagram
corresponding to the full algorithm is displayed in Fig.5.

4 Pathological Voice Classification

In the last section the ensemble version of EMD was used in order to
improve the possibility of finding the 𝐹0 in a unique mode. Here, we will
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Normal Voice

EMD

/a/

IMF 1

IMF 2

IMF 3

IMF 4

IMF 5

IMF 6

IMF 7

IMF 8

Fig. 6. Sustained real normal vowel /a/ in the first row and IMFs 1-8 of its EMD.

explore the non linear decomposition capabilities of EMD to produce
some discriminative information useful for pathological voice classifica-
tion.

In a previous work we selected eight standard acoustic parameters ex-
tracted from sustained vowels, including short-term perturbations of fun-
damental frequency and intensity (termed jitter and shimmer, respec-
tively), and glottal noise measures [16]. These feature vectors were used
to perform an automatic classification of normal and pathological voices,
such as those here considered, improving the best reported results. In [27]
we explored different dimensionality reduction techniques to perform the
visualization and classification using similar feature vectors. Even if in
this work we obtained good results for final vector of dimensions 2 and 3,
it must be noticed that the physical meaning of each dimension was lost
due to the transformations involved. Therefore in this work we explore
a new EEMD based approach that could allow to reduce the dimen-
sionality of the feature vector, retaining certain physical meaning of its
components.

In our experiments, the EMD algorithm of sustained real vowels stopped
at IMF 12 ± 1. As an example a sustained normal vowel /a/ and the
first eight IMFs of its EMD are shown in Fig.6. Inspired by Fig. 7 we
propose to consider for our classification and visualization purposes, a
new feature vector in ℝ6, which components are the maximum PSD of
the IMFs 2-4 and the corresponding frequencies.

It must be emphasized that the EMD based algorithms act as an adaptive
filter bank that is guided by the data [4], meaning that for signals with
different frequency content, a given frequency can be found in different
modes. This fact can reinforce the differences between the normal and
pathological signals. In this way, the use of the proposed feature vectors
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Fig. 7. Log-log power spectrum density, estimated with Burg algorithm, corresponding
to each of the IMFs of a Spanish sustained real normal vowel /a/ displayed in the
previous figure.

could allow to provide new information to improve the discrimination
between this kind of data.
Using these new feature vectors, a𝐾-nearest neighbors’ classification rule
was applied and a 𝐾-fold cross validation method, with 20 subsamples,
was used in order to estimate the classifier performance.

5 Results

5.1 Instantaneous Frequency Extraction

Simulated Normal and Pathological Voices For illustration
purposes, 𝐹0 was extracted with the method proposed in Sec. 3 from
both normal and pathological simulated sustained vowels /a/. The re-
sults are shown in Fig. 8. For comparison, two additional pitch extraction
methods were applied to the same data and also shown in Fig. 8. The
RAPT method (black) [24] was implemented using VOICEBOX6 , while
an autocorrelation-based method (blue) [25] was implemented using the
PRAAT software7. The parameters involved in these two algorithms are
the default ones. We can observe in Fig. 8 several evident errors in dou-
bling or halving-period events both in RAPT and AC-based methods,
specially for the pathological voice case (Fig. 8.b). On the contrary, the
EEMD based method here proposed performs smoothly and without er-
rors in both simulation conditions.

Real Normal and Pathological Voices As in the previous exam-
ple, 𝐹0 was extracted with the method proposed in Sec. 3 and the other

6 VOICEBOX Matlab toolkit v. 1.18 (2008), http://www.ee.ic.ac.uk/hp/staff/

dmb/voicebox/voicebox.html.
7 PRAAT v.5.0.32, http://www.praat.org.
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Fig. 8. 𝐹0 of two simulated sustained vowels /a/ (generated as explained in Sec. 2.1)
are analyzed: (a) normal simulated voice (b) pathological simulated voice. The results
obtained by the autocorrelation based method (blue), RAPT (black) and the proposed
EEMD based method (red) are shown.

two methods, from two sustained real normal vowels /a/. The results
are presented in red in Figs. 9.a (EDC1NAL) and 9.b (JTH1NAL). Even
if the results look similar, a careful inspection would reveal the above
mentioned stair-case nature of the last two methods. This windowing
artifact could be a problem for instantaneous frequency estimation.

The Pearson correlation coefficient between the mean 𝐹0 of the 53 healthy
sustained vowels /a/ reported in [17] and the averaged instantaneous
frequency obtained by our method was 𝑟 = 0.999995.

In Fig. 10 the 𝐹0 corresponding to two pathological voices are presented.
In Fig. 10.a the fundamental frequency of a sustained vowel /a/ from a
patient suffering muscular tension dysphonia is analyzed with the pro-
posed method. On the other hand, in Fig. 10.b a voice with adductor
spasmodic dysphonia is studied. As in Fig. 9, the 𝐹0 obtained with RAPT
and auto-correlation based methods are also superposed in black and
blue. Even if the autocorrelation based method had been reported to be
the best pitch estimation technique for the analysis of pathological sus-
tained vowel /a/ [26], it can be observed in that it fails several times (See
Fig. 10). Also does RAPT algorithm, while the method here proposed,
exhibits a much better behavior.

In a study with 35 disordered sustained vowels /a/ (15 from patients suf-
fering muscular tension dysphonia and 20 suffering adductor spasmodic
dysphonia) we have observed that, in the task of a correct 𝐹0 extrac-
tion, while RAPT and auto-correlation based methods both fail in 22
voices (62.86 %), the here proposed algorithm reduced the number of
failures to only 10 voices (28.57 %). The 𝐹0 estimation was considered
failed when at least one doubling or halving-period event, or a “spike-
like” artifact appears. In the method here proposed, we have observed
that these spike-like artifacts were coincident with pathological voice seg-
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Fig. 9. 𝐹0 of two healthy sustained vowels /a/ from database described in Sec. 2.2 are
analyzed (a) EDC1NAL and (b) JTH1NAL. The results obtained by the autocorrela-
tion based method (blue), RAPT (black) and the proposed EEMD based method (red)
are shown.

ments of very low energy. In order to detect them and to prevent this
kind of mistakes in the 𝐹0 estimation, we consider that a voice-activity
detection method could be applied as a pre-processing stage. However,
the failures of the other two algorithms were more notorious. It is im-
portant to emphasize that the total length of the segments where the
RAPT and autocorrelation-based methods fail, largely exceed the total
length of all spike-like events related with the here proposed method. For
this reason, if another quantifier is used in the algorithms comparison,
as for example the percentage of signal length where the 𝐹0 estimations
are satisfactory, then the advantage of the EEMD based method would
be more pronounced. These improvements will be addressed in future
works.

5.2 Pathological Voice Classification

Simulated Normal and Pathological Voices In order to study
the classification capability of the second new tool presented in Sec. 4,
for each of the simulated voices we have selected as feature vectors’ com-
ponents the maximum PSD (log2) and the corresponding frequencies, of
IMF 𝑖, 𝑖 = 2, 3, 4.
With a simple and general-purpose classifier, a𝐾-nearest neighbors’ clas-
sification rule, the best performance was obtained using 𝐾 = 1, reaching
a 99% of correct classifications. In Table 1.a the obtained confusion ma-
trix is presented. This result confirms that the IMFs’ spectra provide
relevant features that can be used as descriptors for the proposed clas-
sification task. The importance of this experiment is based on the fact
that both normal and pathological synthetic voices have been simulated
without added noise, and that the difference between them is only due
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Fig. 10. 𝐹0 of two pathological sustained vowels /a/ with: a) muscular tension dyspho-
nia and b) spasmodic dysphonia. The results obtained by the autocorrelation based
method (blue), RAPT (black) and the instantaneous 𝐹0 estimated with the proposed
EEMD based method (red) are shown.
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Fig. 11. 𝐹0 of a pathological sustained vowel /a/. Autocorrelation method (blue),
RAPT (black) and EEMD based method (red). Although the proposed method fails
around 𝑡 = 2.1 s, the other ones fails are more evident (period-doubling and period-
halving errors).

to short-term perturbations of their fundamental frequency and inten-
sity, as imposed in the model. Therefore, the proposed method is able to
distinguish between normal and altered voices with very similar Fourier
spectra. This a desirable property in the kind of pathologies we are deal-
ing with.

Real Normal and Pathological Voices Following the same pro-
cedure as in the previous section, but with the real voices DB1, we ob-
tained, with 𝐾 = 3 a 93.40% of true positive classifications. In Table
1.b we present the corresponding confusion matrix, were we can appre-
ciate that we obtained a 94.34% of correct classifications of the normal
voices and a 92.45% in the pathological case. Taking into account that
in Medicine, a pathological case is considered the positive one, these re-
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Table 1. Confusion matrix

(a) Simulated voices

Class Classifications Correct
Pathologic Normal Classifications

Pathologic 198 2 99%
Normal 2 198 99%

(b) Real voices (DB1)

Class Classifications Correct
Pathologic Normal Classifications

Pathologic 49 4 92.45%
Normal 3 50 94.34%

sults indicate that the proposed method has a sensitivity of 0.925 and a
specificity of 0.926.

In the case of discrimination between MTD and AdSD, we show some
preliminary results that suggest that the new tools here presented could
also be useful. Unfortunately the amount of data available at the present
time is not enough to perform an appropriate statistical study from the
point of view of signal analysis, even if from the medical point of view it
is encouraging. Plotting for each voice the log2 values of the frequencies
at which the maximum value of PSD is obtained for IMFs 2, 3, and 4, we
can appreciate in Fig. 12.a) that it seems to be possible to separate AdSD
from the normal and MTD. Plotting the maxima of the PSD (in log2), we
see in Fig. 12.b) that it is possible to separate most of the MTD from the
other pathology and the normal ones. Both plots collaborate to provide a
possible separation in three classes. Therefore, these figures suggest that,
if a larger set of data would be available, it could be possible to perform
a first separation in two classes, class 1: ASD and class 2: normal and
MTD, and them continue working on with class 2 to accomplish the final
classification. We can appreciate that, for IMFs 2, 3, and 4, those voices
in class 1 reach their maximum value of PSD at lower frequencies than
the voice belonging to class 2. While MTD and normal voices could be
separated just using the maxima of the PSD in IMF 3.

6 Discussion and Conclusions

In this work we have discussed some drawbacks and advantages of both
the EMD and the EEMD and how both of these methods can be useful
to extract relevant information from voiced signals. We have presented
the abilities of EEMD for extracting the 𝐹0 from sustained vowels /a/ in
combination with an instantaneous frequency estimator (DESA-1) algo-
rithm. Additionally, a technique for the automatic selection of the mode
from which 𝐹0 can be extracted was here proposed. The new method
was successfully tested on normal and pathological sustained voices and
compared with other algorithms. The EEMD based method has the ad-
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Fig. 12. (a) Frequency (log2) corresponding to the maximum Psd of three IMFs, of
normal (stars) and pathological (diamonds – MTD – and squares – ASD) voices (DB2).
(b) Maxima Psd (log2) corresponding to three IMFs of normal (stars) and pathological
(diamonds – MTD – and squares – ASD) voices (DB2).

vantage to be parameters free, what is an interesting property for non-
computational expert operators. As a drawback, the proposed method
inherits the high computational cost of the EEMD algorithm. However,
its utility in research and clinical applications without the need of on-
line 𝐹0 estimation is clear. These preliminary results suggest important
advantages of the method here proposed and encourage us to continue
the research on these ideas. Although very promising, all the conclusions
here presented need to be statistically tested on a larger database. An
extension to spontaneous speech and noisy signals will be addressed in
future works.
We have also introduced a new method to discriminate between normal
and pathological speech signals based on the spectral analysis of the
IMFs obtained by means of EMD. We have applied this new tool to the
analysis of speech signals corresponding to sustained vowels of different
data sets: real and simulated voices. Inspired by the analysis of real
data, we have performed an automatic classification of simulated voices
(normal and pathologic), with a high accuracy rate (99.00%). In the case
of discrimination between normal and pathological real voices we have
obtained a performance of (93.40%).
The synthetic stimuli are generated by very simple LPC-synthesis excited
by an impulse train. The real excitation spectrum of a voice is more
complicated and would probably be a more difficult and realistic test
to the proposed methods. This is confirmed by the fact that with the
synthetic stimuli, the classifier has an accuracy rate of 99 % compared
to 93 % with real voices. In future works we propose to use a more
realistic glottal flow waveform as excitation.
We consider that it could be possible to overcome the best reported value
by refining the proposed method. These preliminary results strongly sug-
gest that spectral tools based on EMD are useful for the discrimination
between normal and pathological voices. Moreover, they suggest that it
could be possible to develop an automatic tool for differentiation between
pathologies. Future works of this group include the application of these
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results to a wider data base of real signals, in continue collaboration with
voice pathologists, and the analysis and discussion of other classification
techniques.
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Congreso Argentino de Bioingenieŕıa SABI 2005, Paraná, E.R. Ar-
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