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Abstract. Time-frequency and transient analysis have been widely used in signal processing and 
faults diagnosis. These methods represent important characteristics of a signal in both time and 
frequency domain. In this way, essential features of the signal can be viewed and analyzed in order to 
understand or model the faults characteristics. Historically, Fourier spectral analyses have provided a 
general approach for monitoring the global energy/frequency distribution. However, an assumption 
inherent to this method is the stationary and linear of the signal. As a result, Fourier methods are not 
generally an appropriate approach in the investigation of faults signals with transient components. 
This work presents the application of a new signal processing technique, empirical mode 
decomposition and the Hilbert spectrum, in analysis of vibration signals and gear faults diagnosis for 
a machine tool. The results show that this method may provide not only an increase in the spectral 
resolution but also reliability for the gear faults diagnosis. 

Introduction 

Vibration signal analysis has been widely used in the faults detection of rotation machinery. Many 
methods based on vibration signal analysis have been developed. These methods include power 
spectrum estimation, cepstrum analysis, synchronous time average and phase demodulation, which 
have been proved to be effective in gear fault detection. However, these methods are based on the 
assumption of stationary and linearly of the vibration signal. Therefore, new techniques are needed to 
analyze vibration for faults detection in gear mechanism. Gear faults by their nature are time localized 
transient events. To deal with non-stationary and non-linearity signals, time-frequency analysis 
techniques such as the Short Time Fourier Transform (STFT) [1], Wavelet Transform (WT) [2-6] and 
Wigner-Ville distribution (WVD) [7-9] are widely used. The STFT [1] uses sliding windows in time 
to capture the frequency characteristics as functions of time. Therefore, spectrum is generated at 
discrete time instants. An inherent drawback with the STFT is the limitation between time and 
frequency resolutions. Furthermore, this method requires large amounts of computation and storage 
for display. The Wavelet Transform (WT), on the other hand, is similar to the SHFT in that it also 
provides a time-frequency map of the signal being analyzed. The improvement that the WT makes 
over the STFT is that it can achieve high frequency resolution with sharper time resolutions. A very 
appealing feature of the wavelet analysis is that it provides a uniform resolution for all the scales. 
Limited by the size of the basic wavelet function, the downside of the uniform resolution is uniformly 
poor resolution. Moreover, an important limitation of the wavelet analysis is its non-adaptive nature. 
Once the basic wavelet is selected, one will have to use it to analyze all the data. This leads to a 
subjects assumption on the characteristic of the analyzed signal. As a consequence, only signals 
feature that correlate well with the shape of the wavelet function have a chance to lead to coefficients 
of high value. All other feature will be masked or completely ignored. The Wigner-Ville distribution 
(WVD) is a basic time-frequency representation, which is part of the Cohen class of distribution. 
Furthermore, it possesses a great number of good properties and is of popular interest for 
non-stationary signal analysis. The difficulty with this method is the severe cross terms as indicated 
by the existence of negative power for some frequency ranges.  
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In this work, we introduce a novel approach for nonlinear, non-stationary data analysis. A 
application of Hilbert-Huang transform method to fault diagnosis of gear crack is presented. The 
methodology developed in this paper decomposes the original times series data in intrinsic oscillation 
modes, using the empirical mode decomposition. Then the Hilbert transform is applied to each 
intrinsic mode function. Therefore, the time-frequency distribution is obtained. The basic method is 
introduced in detail. The Hilbert-Huang transform is applied in the research of the faults diagnosis of 
the gear crack.  

This paper has been organized as follows: Section 1, gives a brief introduction of the 
time-frequency analysis technology. Section 2, gives a brief description of the Hilbert-Huang 
transformation (HHT). Section 3, presents the method and procedure of the fault diagnosis based on 
HHT. Section 4, gives the applications of the method based on marginal spectrum and instantaneous 
energy to faults diagnosis of the gear crack. Section 5, gives the main conclusions of this paper. 

Brief description of the Hilbert-Huang transformation [10]

Hilbert-Huang transformation is an emerging novel technique of signal decomposition having many 
interesting properties. In particular, HHT has been applied to numerous scientific investigations, such 
as biomedical signals processing [11-13], geophysics [14-15], image processing [16], structural 
testing [17] and so on. In order to facilitate the reading of this paper we will introduce in detail the 
Hilbert-Huang transformation, which is a relatively novel technique. 

The concept of intrinsic mode function. Huang et al [10] have defined IMFs as a class of 
functions that satisfy two conditions:  

1)In the whole data set, the number of extrema and the number of zero-crossings must be either 
equal or differ at most by one;  

2) At any point, the mean value of the envelope defined by the local maxima and the envelope 
defined by the local minima is zero. 

Empirical mode decomposition method: the sifting process. The algorithm operates through 
six steps: 

(1) Identification of all the extrema (maxima and minima) of the series )(tx .
(2) Generation of the upper and lower envelope via cubic spline interpolation among all the 

maxima and minima, respectively. 
(3) Point by point averaging of the two envelopes to compute a local mean series )(tm .
(4) Subtraction of )(tm  from the data to obtain a IMF candidate )()()( tmtxtc −= .
(5) Check the properties of )(tc : 

        •  If )(tc  is not a IMF (i.e. it does not satisfy the previously defined properties), replace )(tx

with )(tc  and repeat the procedure from Step 1; 

      •  If )(tc  is a IMF, evaluate the residue )()()( tctxtr −= .
(6) Repeat the procedure from Steps 1 to 5 by sifting the residual signal. The sifting process ends 

when the residue )(tr satisfies a predefined stopping criterion. 
At the end of the procedure we have a residue )(tr  and a collection of n  IMFs, named )(tci

( ni L,2,1= ). The )(tci  is generated being sorted in descending order of frequency and therefore )(1 tc

is the one associated with the locally highest frequency. Furthermore the original )(tx can be exactly 
reconstructed by a linear superposition: 
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Thus, one achieves a decomposition of the data into n-empirical IMF modes, plus a residue, )(trn , 
which can be either the mean trend or a constant.  

The Hilbert-Huang transform (HHT) . Having obtained the IMFs using EMD method, one 
applies the Hilbert transform to each IMF component. Amplitude )(tai  and phase )(tiθ  can be 
expressed as 

)]([)()( 22 tcHtcta iii +=   ,                                                                                                        (2) 
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Therefore, the instantaneous frequency )(tiω  can be given by: 
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The time-frequency distribution is designated as the Hilbert-Huang spectrum ),( tH ω : 
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where the residue )(trn  has been left out. Re {.} denotes the real part of a complex quantity. 
Eq. (5) enables us to represent the amplitude and the instantaneous frequency, in a 

three-dimensional plot, in which the amplitude is the height in the time-frequency plane.
With the Hilbert-Huang spectrum defined, the marginal spectrum, )(ωh , can be defined as 

∫=
T

ttHh
0

d),()( ωω ,                                                                                                                    (6) 

where T  is the total data length. 
The Hilbert spectrum offers a measure of amplitude contribution from each frequency and time, 

while the marginal spectrum offers a measure of the total amplitude contribution from each 
frequency. 

Therefore, local marginal spectrum of each IMF component is given as 

∫=
T

ii ttHh
0

d),()( ωω ,                                                                                                                  (7) 

The local marginal )(ωih  spectrum offers a measure of the total amplitude contribution from the 
frequency that we are interested in. 

The instantaneous enery )(tIE  is defined as  

ωω
ω

ω∫=
2

1
),()( 2 dtHtIE ,                                                                                                               (8) 

The instantaneous energy )(tIE  provides information about the time variation of energy. 
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Proposed marginal spectrum method and instantaneous energy based on HHT 

The procedure of proposed marginal spectrum and instantaneous energy method based on the HHT is 
given as follows: 

1) To decompose the analyzed signal using EMD and to obtain IMFs; 
2) To select the interested IMF component )(tci according to the objective of fault diagnosis,; 
3) To calculate the marginal spectrum )(ωih according to Eq. (7); 
4) To compute instantaneous energy of  fault signal according to Eq. (8); 
5) To analyze the marginal spectrum and instantaneous energy of selected  )(tci  component and to 

draw a diagnostic conclusion. 

Gear faults diagnosis based on marginal spectrum and instantaneous energy 

Gears are very popular in industrial application. A broken gear tooth failure may cause fatal accidents, 
so the recognition of gear tooth cracks is very important for the safety of a machine tool or gearbox. 
The vibration signals of the gear crack are sampled on a head-box of a machine tool. The motion is 
produced by an AC motor. Localized defect was seed in the root of the gear of the output shaft by an 
electric-discharge machine to keep their size and depth under control. The size of the artificial defect 
was 1mm in depth and the width of the groove was 1.5 mm. The transmission ratio is 36/28, which 
means that an decrease in rotation speed is achieved.The input speed of the spindle is 1470r/min, that 
is, the rotating frequency of the output shaft rf is 19.11Hz. The monitoring and diagnostic system is 
composed of four accelerometers, amplifiers, B&K 3560 spectrum analyzer and a computer. The 
sampling span is 6.4 kHz, the sampling frequency is 16384 Hz and the sampling point is 2048. 

      
Fig.1 Time-domain vibration signal with gear crack        Fig.2 Power spectrum of the vibration 

signal 

The original vibration signal with gear crack is displayed in Fig.1. It is clear that there are periodic 
impacts in the vibration signal. There are significant fluctuations in the peak amplitude of the signal. 
However, it is hardly possible to evaluate the gear fault condition only through such time domain 
vibration signal.  

Fig.2 displays the power spectrum of the vibration signal with gear crack. 1376Hz frequency 
component, which is the second harmonic of the meshing frequency, can be clearly seen in Fig.2. But 
there is no fault frequency component around 19.11Hz. Therefore, classical Fourier analysis has some 
limitation such as unable to process non-stationary signals.  

To the data of Fig.1, the EMD algorithm is applied. Fig.3 displays the empirical mode 
decomposition in ten IMFs of the vibration signal in Fig.1. The decomposition identifies ten modes: 
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1c 9c  represents the frequency components excited by the crack defects, 10c  is the residue, 
respectively. Mode 1c  contains the highest signal frequencies, mode 2c the next higher frequency 
band and so on. The transient caused by the crack faults is clearly captured in mode 1c .

     
Fig.3 IMFs of the vibration signal shown in Fig.1               Fig.4 Marginal spectrum of IMFs 

    
Fig.5 Marginal spectrum of vibration signal               Fig.6 Instantaneous energy of the signal

From Fig.3, it can be easily proven that the EMD decomposes vibration signal very effectively on 
an adaptive method. The Hilbert-Huang transform can be applied to each IMF )(tci , resulting in 
marginal spectrum )(ωih . This is shown in Fig.4. The mode 1c  with marginal spectrum centered from 
1000 Hz to 8000 Hz and mode 2c  with marginal spectrum centered from 600 Hz to 4000 Hz. 
Therefore, it is can be concluded that mode 1c  and mode 2c  are the high frequency noise. The mode 

3c  with marginal spectrum centered at 1376Hz, which can be obviously associated with the second 
harmonic of the meshing frequency. Mode 4c , 5c , 6c and 7c  are associated with the high harmonic of 
the rotational frequency of the output shaft. The mode 8c  with marginal spectrum centered at 38.22 
Hz, which can be obviously associated with the second harmonic of the rotational frequency of the 
output shaft and mode 9c with the rotational frequency of the output shaft itself (19.11Hz). Moreover, 
the amplitude of the marginal spectrum 8h  and 9h  are larger than that of the others. So it can be 
concluded that the crack faults is occurred in the gear of output shaft. Therefore, it seems that mode 9c

best represents the time scale of the transient caused by gear crack damage. In other words, the IMF 
mode 9c is related to gear crack defect of the output shaft. The total marginal spectrum is shown in 
Fig.5. 
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The instantaneous energy )(tIE is shown in Fig.6. The presence of crack results in a sudden 
increase of vibration energy. In Fig.6, the instantaneous energy is relatively high and has the period 
impulse associated with period of the output shaft revolution. 

Conclusions 

In this paper, a method for gear crack fault diagnosis was presented based on a newly developed signal 
processing technique named as Hilbert-Huang transform. We have obtained that the original vibration 
signals of gear crack fault can be decomposed in ten intrinsic modes. Using EMD method, we can 
recognize the vibration modes that coexist in the system, and to have a better understanding of the 
nature of the fault information contained in the vibration signal. The experimental result has been 
shown that marginal spectrum and instantaneous energy can be used as a diagnostic feature for gear 
crack faults. 
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