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Abstract 

We conducted an experiment to determine whether the rhythm with which imagined syllables are 
produced may be decoded from EEG recordings.  High density EEG data were recorded for seven 
subjects while they produced in imagination one of two syllables in one of three different rhythms. We 
used a modified Second Order Blind Identification (SOBI) algorithm to remove artefact signals and 
reduce data dimensionality.  The algorithm uses the consistent temporal structure along multi-trial EEG 
data to blindly decompose the original recordings.  For the four primary SOBI components, joint temporal 
and spectral features were extracted from the Hilbert spectra (HS) obtained by a Hilbert-Huang 
Transformation (HHT).  Hilbert spectra provide more accurate time-spectral representations of non-
stationary data than do conventional techniques like short-time Fourier spectrograms and wavelet 
scalograms.  Classification of the three rhythms yields promising results for inter-trial transfer, with 
performance for all subjects significantly greater than chance.  For comparison, we tested classification 
performance of three averaging-based methods, using features in the temporal, spectral, and time-
frequency domains, respectively, and the results are inferior to that of the SOBI-HHT-based method.  The 
results suggest that the rhythmic structure of imagined syllable production can be detected in non-invasive 
brain recordings, and provide a step toward the development of an EEG-based system for communicating 
imagined speech. 
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1. Introduction 

Recent advances in EEG technology have caused a surge of interest in the development of a brain-
computer interfaces (BCI).  BCI research often focuses on finding a substitute for a broken mind-body 
chain that can help paralyzed patients move and communicate.  Much research has been directed toward 
building a brain-computer interface which would allow its user to avoid the need for motor output by 
allowing direct cortical control of prostheses or machines (e.g., Donchin et al. 2000, Birbaumer et al 2000, 
Craelius 2002, Blankertz et al 2004).  Research on classifying mind states using various forms of brain-
imaging data has contributed to these advances. For example, scientists have successfully predicted the 
properties of unseen visual stimuli using fMRI signals from primary visual cortex (Haynes and Rees 
2005).  EEG signals recorded during imagined movement may also be classified (Ince et al 2006, Wang 
and Makeig 2009) and used for real-time control (Pfurtscheller et al 2006, Leeb et al 2007, Zhao et al 
2009).  Such results confirm that the human cortex generates signals observable extracranially which may 
be used to infer the internal state of the subject.   

Research on decoding verbal thoughts from brain signals can be dated back to the 1960s, when attempts 
were made to transmit letters using Morse code extracted from EEG (Dewan 1967).  BCI text generation 
based on the P300 oddball paradigm has been a particularly successful approach to communication based 
on brain signals alone (Wolpaw et al 2000, Schalk et al 2004).  There are also potential non-clinical 
applications of BCIs for communication.  In situations where it may be difficult or inappropriate to 
communicate vocally or gesturally, a BCI system for automatic imagined speech recognition could be 
particularly helpful.  

A variety of neuroimaging studies show that there are large-scale cortical networks involved in speech 
signal processing and in language production (Bokde et al 2001, Weiss and Mueller 2003, Vigneau et al 
2006, Hickok and Poeppel 2007).  The dynamics of these networks can be traced by brain imaging 
techniques like EEG (Indefrey and Levelt 2004) and MEG (Ahissar et al 2001, Luo and Poeppel 2007).  
With an eye toward future development of an EEG-based BCI to communicate imagined speech, we 
conducted an experiment to determine whether the rhythm with which imagined syllables are produced 
may be decoded from EEG recordings. 

EEG signal analysis for BCI applications typically uses filters or Fourier transforms to isolate signatures 
in the time-frequency plane that may be used to classify cognitive events reliably.  In this paper, we use 
Hilbert Spectra to explore EEG signals in the time-frequency domain (Huang et al 1998).  Hilbert spectra 
are well-tailored to the analysis of nonstationary time-series.  They provide a compact time-frequency 
representation of EEG signals and can surpass in precision traditional time-frequency representation 
techniques like short-time Fourier transform spectrograms and wavelet scalograms.  We demonstrate that 
Hilbert spectral analysis can be used to identify features that may be used to classify imagined speech 
rhythms.  A preliminary report of these data analyzed with conventional spectral analysis methods has 
been presented elsewhere (D'Zmura et al 2009b). 
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2. Methods 

We describe here the EEG experiment on imagined speech and then turn to the Hilbert spectral analysis 
applied to these data.  The analysis comprises seven steps.  1). A variant of the SOBI algorithm 
(Belchourani et al 1997) is used to determine linear combinations of channels (EEG electrodes at various 
scalp locations) which provide, in the least-square-error sense, an optimal decomposition of the raw data 
into a set of mutually orthogonal components.  2). An Empirical Mode Decomposition on the time-
varying waveforms, aggregated across space, is used to break these down into Intrinsic Mode Functions 
(Huang et al 1998).  3). The instantaneous frequency and amplitude of each Intrinsic Mode Function are 
estimated to determine the Hilbert spectra.  4). The resulting Hilbert spectra contributing energy in the 3-
20Hz frequency band are normalized by the PSD of the baseline interval.  5). The Hilbert spectra are 
binarized by setting a threshold on spectral amplitude.  6). Suprathreshold, proximal, time-frequency bins 
are aggregated to determine time-frequency "spots of interest".  7). Trials are classified predictively using 
various features of the resulting "spots of interest". 

2.1 EEG Experiment 

Seven subjects participated in the experiments. They sat in a dimly lighted room and were instructed to 
minimize body and eye movements while keeping their eyes open.  Their task was to imagine speaking 
one of two syllables, /ba/ or /ku/, in one of three rhythms (see Figure 1). The first rhythm has the time 
structure {| 1.5 | 1.5 |}, the second has the structure {| 0.75 | 0.375 | 0.375 | 0.75 | 0.375 | 0.375 |}, and the 
third has the structure {| 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |}; the vertical lines "|" represent the expected times 
of imagined syllable production onset, while the numbers indicate the time intervals in seconds between 
imagined syllables.  Each experimental trial started with a period during which the syllable and rhythm 
were cued; the cue period was followed by a period during which the subject imagined saying the cued 
syllable in the cued rhythm without any vocalization (D'Zmura et al 2009a).   
 



EEG-based classification of imagined speech rhythm 

 

4 
 

 
 
Figure 1. Trial time-course for the three rhythms.  Syllable and rhythm cues were presented through 
earphones during an initial cue period of duration 4.5 sec.  The syllable cue, either "ba" or "ku", was 
presented during the initial 0.5 sec.  EEG recorded during the following 1.0 sec of silence was used as the 
baseline power spectral density estimator in offline analysis.  During the following 3.0 sec period, a 
rhythmic cue was provided by clicks occurring at times appropriate to rhythm 1 (top), rhythm 2 (middle) 
or rhythm 3 (bottom).  Subjects imagined speaking the cued syllable in the cued rhythm during the 
following production period of duration 6.0 sec.  Refer to text for details. 

Each trial lasted 10.5 seconds.  During the first 4.5 seconds, the cues to syllable and rhythm were 
presented through earphones.  The syllable cue, a spoken "ba" or "ku", was presented during the initial 0.5 
sec of each trial.  Clicks presented during the next 3.0 sec interval provided the cue to the rhythm.  The 
cue period was followed by an imagined speech production period of duration 6.0 sec.  Subjects were 
instructed to imagine the cued syllable using the cued rhythm and tempo identical to that indicated by the 
cue period clicks.  

Syllable and rhythm cues were presented using STAX electro-static earphones.  These headphones do not 
interfere with EEG recordings.  EEG was recorded simultaneously using a 128-channel Geodesic Sensor 
Net (Electrical Geodesics Inc.) in combination with an ANT-128 (Advanced Neuro Technology) 
amplifier.  The EEG was sampled at 1024 Hz and online average referenced.  The presented cue signals 
were accompanied by sinusoidal markers which were fed directly into the EEG amplifier to mark the 
onset times of cue and imagined speech production periods of each trial. 

Each subject performed 120 trials for each of three rhythms and two syllables, for a total of 720 trials 
recorded per subject.  During data analysis, we performed classification on the data for all six conditions 
and for just three rhythms; the latter analysis was conducted by pooling trials of two syllables of the same 
rhythm to get 240 trials per rhythm.  In our primary analysis, data from the 6.0 sec long imagined speech 
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periods were analyzed to determine whether one can decode imagined speech rhythm from EEG signals.  
In a second analysis, we used EEG data from the 3.0 sec long click cue period of each trial to find out 
whether the cue sensory signals can be decoded from EEG. 
 

2.2 Blind source separation using SOBI 

For each subject, we used a variant of Second-Order Blind Identification (SOBI) algorithm (Belchourani 
et al 1997) to decompose the raw EEG data into a set of mutually orthogonal components.  The classical 
SOBI algorithm can be described as follows.  Consider an -channel EEG time series  with mean zero.  
Each sample is assumed to be an instantaneous linear mixture of  unknown sources , where the mixing 
occurs through some unknown linear mixing matrix : 

 
 (1) 

This can be written equivalently as: 

 (2) 

In order to calculate the unknown separation matrix , the data is first pre-whitened by finding a 
whitening matrix  so that the auto-correlation of  is normalized to identity: 

 (3) 
  (4) 

In Eqns. 3 and 4,  is the whitened time series,  is the (auto) correlation matrix of  at delay 0,  

denotes the expectation operator, and  is an Identity matrix of the same size as the autocorrelation. 

The whitening matrix  can be found by diagonalizing  as follows: 

 (5) 

in which  is a diagonal matrix, whereby  

 (6) 

After pre-whitening, a set of cross-correlation matrices  is calculated for certain time delay values .  

In choosing time delay values for this study, we followed the suggestion of Tang and colleagues (2005) 
that the delays span a wide range, up to and including the Nyquist frequency.  In this study we use the 
values of  

   (7) 
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These numbers of samples may be converted to delays (sec) using the sampling rate 1024 samples/sec.  
The key procedure of SOBI is to find a unitary transformation  that jointly diagonalizes  by 

minimizing the criterion (Cardoso 1998) 

 (8) 

The estimate of the separation matrix  is thus provided by the product of the whitening matrix  
(Eqn. 6) and the unitary transformation matrix  that provides joint-diagonalization (Eqn.8): 

 (9) 

A problem which limits the application of classical SOBI is that the transformation basis of recovered 
components is not consistent across trials.  By assuming a stationary distribution for the neural basis, we 
can extend classical SOBI to multi-trial recording by determining a single, approximate, pre-whitening 
solution and by jointly diagonalizing the cross-correlation matrices for the same set of time delays across 
trials.   First, the across-trial pre-whiten solution is computed as 

 (10) 

Second, the within-trial cross-correlation term  is changed to the across-trial expectation  for 

each time delay ; the joint diagonalization is then performed on the expectations.  Finally, after 
estimating the separation matrix, SOBI components are estimated separately for each trial by projecting 
the raw data onto the SOBI space.  

Four of the across-trial SOBI components were chosen for each subject.  We ranked the full set of 
components by energy and then selected, for each subject, the first four components with spectral content 
compatible with EEG signals and neurophysiologically-interpretable topography, consistent with dipole 
sources in the brain (Nunez and Srinivasan 2006).  The spatial distribution of the mixing weights for the 
four components used for one subject in further analysis is shown in Figure 2.  Selecting for further 
analysis these four SOBI components not only greatly reduces the dimensionality of the data but also 
screens out most artefact signals of non-cortical origin. 
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Figure 2. Cortical distributions of the four SOBI components of the mixing weights 
for subject 6.  Values are normalized to the range of [ -1 1].  Dark blue represents a 
mixing weight of -1 and dark red +1; mixing weight polarity is arbitrary. 

 
2.3 Hilbert Spectrum 

The Hilbert Spectrum (HS) is an emerging method of joint time-frequency representation of signals.  
Unlike classical time-frequency analysis methods, HS does not employ a constant or linear time vs. 
frequency resolution window.  It adaptively tracks the evolution of the time-frequency basis in the 
original signal and can provide much detailed information at arbitrary time-frequency scales (Huang et al 
1998).  The fundamental step in calculating a HS is the Empirical Mode Decomposition (EMD).  The 
EMD expresses a signal  in terms of a finite (and usually small) set of mathematically well-defined 
components , called Intrinsic Mode Functions (IMFs), and a residue term: 

 (11) 
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In practice, each IMF can be treated as a new time series and several IMFs can be superimposed to 
generate new signals.  Figure 3 illustrates the IMFs (bottom) of a raw EEG waveform (top), with time 
series at left and their corresponding power spectra at right. 

   

 
 
Figure 3. Example of the EMD and corresponding spectra for 4.5 seconds of EEG data for one 
electrode. The top left panel shows the time-course of the raw EEG.  The bottom left panel shows 
all IMFs from the EMD, ranked downward with successive order, and the residue, which is the 
bottom-most component.  The corresponding power spectra are shown on the right panels, in 
logarithmic scale.  The spectra of IMFs overlap and differ from band pass filtered spectra. 

 

The intrinsic mode function spectra, shown on the right of Figure 3, indicate that IMFs may be considered 
roughly as outputs of a set of band limited filters, but that the choice of bandwidths is adapted to the 
intrinsic modes of the original signal.  Although IMFs of higher order (toward the bottom of Figure 3) 
generally have relatively greater energy in successively lower frequency bands, there is a considerable 
amount of spectral content overlap among IMFs. 
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Once IMFs are calculated, the instantaneous amplitude  and phase  for each IMF could be computed 
from their analytical representations: 

 (12) 
 

 (13) 

 (14) 

where  is the Hilbert transform of the IMF.  The instantaneous frequency  is defined as the rate at 
which phase changes with time: 

 (15) 

The original signal  can be expressed in a manner similar to a Fourier transform as: 

 (16) 

Finally, the Hilbert Spectrum  can be visualized by plotting the instantaneous amplitude  (or 
power) at the instantaneous frequency  as a function of time .  A major difference between HS and 
classical time-frequency plots like the short-time Fourier transform is that the instantaneous functions in 
HS keep continuous traces of frequency change, resulting in a precise but sparse representation.  The HS, 
spectrogram and wavelet scalogram of real EEG data are shown in Figure 4.  The HS gives the most 
economic time-frequency representation without any compromise of resolution in either temporal or 
spectral basis.  In addition, only HS retains the information of how trend frequency changes in the 
original time series.  For example, if one compares all three time-frequency plots over the 3500th to 
4000th sample region, one sees an increase of power in the alpha band around sample 3900.  Yet only HS 
suggests clearly that the observed change is accompanied by the adjustment of central frequency toward 
the low alpha band of certain signal components (primarily by the blue, topmost, component shown in the 
HS plot at the bottom of Figure 4). 
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Figure. 4 Comparison of the spectrogram, wavelet scalogram and Hilbert spectrum of a same time series. 
Top Row: Original signal from SOBI output.  Second row: Short time Fourier Transform spectrogram.  
Third row: Wavelet Scalogram, using a Morlet mother wavelet.  Bottom row: Hilbert Spectrum, projected 
onto a [3-20] Hz x 384 time-point grid.  Instantaneous frequency trends from different IMFs are coded 
with different colours but the intensity scale is kept the same (See figure 5 for the intensity scale).   
 

 

2.4 Spectral density normalization 

The spectral power distribution in the EEG is not uniform.  A considerable amount of energy clusters 
around 8 ~ 14 Hz, or the alpha-band.  Yet previous work suggests that useful information may be tracked 
in other frequency bands.  For example, in Luo and Poppel's study (2007), signals following the envelope 
of the speech acoustic waveform were detected in theta and alpha bands (3 ~ 14 Hz).  The beta band (16 ~ 
30) has also been suggested to carry cognitive-related information.  In a regular time-frequency plot, 
energy in bands other than the alpha is usually dwarfed by the alpha peaks.  This suggests that one use 
normalized spectral densities if activities in different frequency bands are to be evaluated equally.  In this 
study, we used the one second of data directly following the syllable cue as the baseline estimator for 
each trial (see Figure 1 and Figure 5).   Baseline power spectral density between 3 to 20 Hz was 
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calculated by applying a FFT to the data and then fitting a spline along the frequency bins to determine a 
smoothly-fitting function .  Next, the Hilbert Spectrum  of that trial was normalized using 

 along each time frame over the frequency window of 3 ~ 20 Hz to provide the spectral-density 
normalized Hilbert spectrum : 

 (17) 

 

2.5 Energy normalization 

The total energy in  can vary dramatically across trials, partly from the task and especially in a way 
which depends on the alertness of the subject.  Such energy variation can be problematic when setting 
thresholds on multiple trials.  To ensure comparable spectral energy across different trials, we further 
normalized the total energy in each HS by the first quartile  of its power distribution:    

 (18) 

We use  instead of the median because the power distribution in EEG is skewed (Weineke et al 1980) 
and we expect  to be a more robust estimator of the spontaneous EEG activities.  

 

2.6 Binary transform and feature extraction 

After  is obtained for all trials for a subject, a threshold is selected in order to find "spots of interest" 

(SOI).  The threshold level was chosen so that any  contains least one SOI and at most eight SOIs.  
Typically the threshold is about 50% of the range of  .  After thresholding,  is reduced to a binary 
representation.  The binarization may result in many proximal yet disconnected suprathreshold time-
frequency bins.  A screening procedure was used to aggregate these proximal suprathreshold time-
frequency bins.  The procedure has three criteria.  First, any pair of bins differing by 2Hz or less were 
grouped.  Second, any pair of bins differing by 160 msec or less were grouped.  Finally, isolated and 
small time-frequency bins or aggregates spanning less than 2Hz or less than 160 msec were dismissed 
form further analysis.  The resulting time-frequency bin aggregates are the spots of interest shown in the 
bottom panel of figure 5. This figure shows the original HS (Fig 5.A); EEG power is distributed primarily 
around 12 Hz.  After normalizing using the spectral density (Fig 5.E), energy at lower frequencies 
becomes more prominent (fig 5.B).  Energy normalization using the first quartile (Fig 5.F) produces the 
fully normalized HS (Fig 5.C).  The binary transform effected by applying an amplitude threshold picks 
up various suprathreshold time-frequency bins.  Those proximal yet disconnected bins are grouped into 
fewer regions, the SOI, using the screening criteria (Fig 5.D). 
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Figure 5. Preprocessing of the Hilbert Spectrum.  A. Original Hilbert Spectrum H .  B. H is 
Normalization by the baseline spectrum density (see E) to provide  .  The alpha band is generally 
suppressed by this normalization and lower frequency content emerges.  C.   is normalized further by 

the first quartile of its power distribution to obtain .  D.  is binarized by applying an amplitude 
threshold.   Suprathreshold time-frequency bins are aggregated using screening criteria, detailed in the 
text, to provide "spots of interest"; three are shown in the bottom panel; screening criteria eliminate the 
two isolated suprathreshold bins from further consideration.  E. The Spectral power distribution used for 
normalization, estimated for each trial from the 1 sec interval following the syllable cue.  F. The intensity 
scale for A B and C.  The binarization threshold is shown in blue on this scale.  See text for details. 
 

After the binary transformation and screening, the following time-frequency properties of the remaining 
SOIs were evaluated for each spectrum to generate the feature vector for data classification (see Figure 6): 
F1) the number of SOIs;  F2) the average time distance between each two neighbouring SOIs;  F3) the 
average time span of SOIs;  F4) the average central frequency of SOIs, and  F5) the average frequency 
span of SOIs.  20 featural data per trial (5 features by 4 SOBI components) were used for classification. 
 



EEG-based classification of imagined speech rhythm 

 

13 
 

 
 
Figure 6. Diagram of feature selection.  After screening out lesser SOIs, five features were extracted from 
each binary image: F1) the number of SOIs;  F2) the average time distance between neighbouring SOIs;  
F3) the average time span (duration) of SOIs;  F4) the average central frequency of SOIs, and  F5) the 
average frequency span of SOIs.  SOIs within 2 Hz frequency distances and 160 ms time distances were 
regrouped.  Small isolated SOIs were dismissed.   
 

2.7 Classification 

Trials were randomly partitioned into a testing set and a training set.  We used a fixed number of trials in 
the testing set, 150, for the 6-condition classification, and 300 for the 3-rhythm classification.  All 
remaining trials were used for training; the exact number varies among subjects.  We used a Bayesian 
classifier based on multiclass linear discriminant analysis (LDA), which projects linearly the feature 
vectors to positions which maximally separate different groups.  This procedure can be described in terms 
of finding a weight matrix  which maximizes the following criteria: 

 (19) 

where  and  corresponds to the between-class and within-class covariance matrices, respectively.  

We examined the coefficients for the four different SOBI components as well as for five different time-
frequency features in the weight matrix  to evaluate their contribution to the overall classification.  
 

2.8 Classification using features based on temporal, spectral and time-frequency domain averages 

We also analyzed the imagined speech data using conventional averaging algorithms with features 
obtained in three domains: temporal, spectral and joint time-frequency. 

The first analysis is a straightforward multivariate linear classification based on EEG temporal waveforms.   
The raw EEG recordings were first band-pass filtered to remove line noise.  They were then segmented by 
trials and conditions using the same procedures as described above.  The filtered and segmented data were 
then decimated to 1/16th of the original size to avoid rank deficiency in covariance matrix calculations.  
The resulting data were partitioned randomly using the same criterion as in the SOBI-HHT method (408 
trials for training, 300 trials for testing), and linear discriminant analysis (LDA) classification was 
performed separately for each EEG channel. 
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The second analysis is similar to the first one; the sole difference is that it is performed in the frequency 
domain rather than in the time domain.  The raw EEG recordings were Fast-Fourier Transformed after 
having removed any linear tendency.  The resulting complex-valued Fourier coefficients were partitioned 
and supplied to the LDA classifier in much the same way as described above. 

For the third analysis, we performed a time-frequency transformation of EEG data using short-time 
Fourier transform methods (STFT).  We computed spectrograms by convolving cosine- and sine-phase 
Gabor functions at 18 center frequencies with imagination-period EEG data.  The center frequencies were 
spaced logarithmically in the interval 4 ~ 28 Hz.  The Gaussian window standard deviations were 
decreased as center frequency increased to maintain an identical number of cycles within the Gaussian 
window.  The spectrograms computed for the imagination periods had too many entries for covariance 
matrices to be inverted, a step required for LDA classification.  We thus used a matched filter approach to 
classification.  For each of the three rhythm classes we first computed class-average spectrograms, one 
per rhythm.  The class-average spectrograms are not generally orthogonal to one another.  One can derive 
orthogonal filters based on the class-average spectrograms by unraveling the three spectrograms to 
produce 3 vectors.  The pseudoinverse of the matrix comprising these three vectors itself comprises three 
vectors (the matched filters) with desirable properties: the inner product of the matched filter for class i 
and the class-average spectrogram for class j is equal to 1 if i = j and 0 otherwise.  

As with the other classification methods, matched filters were computed for training trial data and applied 
to test trials to determine classification performance.  The matched filter which provides the largest 
response to a given test trial provides this method's guess as to which class the trial belongs to.  The class-
average spectrograms and corresponding matched filters are computed separately for each electrode.  
Matched-filter responses from each electrode may be aggregated across the scalp to provide a single best 
guess by summing corresponding matched-filter responses across electrodes and determining which 
matched-filter class provides the largest response. 

3. Results 

In what follows we first report the results of using HHT-based method to classify imagined speech 
rhythm based on EEG signals.  We then examine whether more traditional averaging-based methods work 
as well, and find that two of these (using features in the temporal and spectral domains, respectively) 
failed to produce significant classification, while the third one (using features in the time-frequency 
domain) produces results that can potentially rival the HHT method.  Finally, we use the SOBI-HHT 
method to classify EEG data from the 3-second click cue period of each trial; the method works on 
rhythms specified by sensory input as well as imagined rhythms.  

3.1 HHT-based decoding of imagined speech rhythm 

Spot of interest features found for the four SOBI components help to classify imagined speech rhythm but 
fail to classify both rhythm and syllable.  The latter result is shown by the performance of the six-
condition classification, which seeks to identify the rhythm and syllable cued on a particular trial from 
EEG recordings of imagined speech.  Table 1 summarizes these results.  The average correct 
classification level across the seven subjects is 22.10%, which is not significant (p-value = 0.04) against 
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chance level (16.67%) at α = 0.001, assuming a binomial mass function (n = 150, p = 1/6).  While 
classification rates for two subjects (S4, S6) are significant at α = 0.01, the corresponding classification 
performance levels (24.67% and 26.0%, respectively) are barely informative. 

Results for the three-rhythm classification are shown in Table 2.  The mean performance among all 
subjects, using all components of the SOI feature-SOBI data vector, is 58.05%.  Assuming a binomial 
mass of n = 300, p = 1/3, then the significance level α = 0.001 corresponds to 42% (126/300), so that the 
results of all seven subjects are significantly greater than chance.  The best classification performance is 
found for S6, with a classification performance of 218/300 or 72.67%.  Table 2 shows also, for each 
subject, which SOI feature and which SOBI component (shown topographically) contribute most to 
successful predictive classification.  The SOI feature F3, the average time span of SOIs, is the 
predominant contributor to rhythm classification in five of seven subjects; the normalized classification 
weight for F3 ranges from 16% to 31% across subjects. 

 

Table 1. Summary of the six-condition classification results for all seven subjects S1-S7.  The available 
trials are partitioned into training and testing sets and the classification performance is the percentage of 
correctly classified testing trial. 
 
 S1 S2 S3 S4 S5 S6 S7 
# Training 201 238 201 201 201 204 195 
# Testing 150 150 150 150 150 150 150 
Accuracy 20.66% 22.67% 22.00% 24.67% 19.33% 26.00% 19.33% 
 
 

 

Table 2. Summary of three-rhythm classification results for all seven subjects. The first three rows shows 
the partitioning of trials into training and testing sets and the classification performance.  The last three 
rows show the time-frequency attribution, the normalized classification weights for the most significant 
data point in the feature vector as well as the topographic SOBI component distribution for each subject.  
Feature categories are listed in the caption to figure 6. 

 

   
 S1 S2 S3 S4 S5 S6 S7 
# Training 402 276 402 402 402 408 390 
# Testing 300 300 300 300 300 300 300 
Accuracy 54.00% 61.67% 55.00% 63.33% 48.33% 72.67% 51.33% 
Category F3 F4 F3 F2 F3 F3 F3 
Weight  16.80% 18.07% 30.82% 16.88% 17.79% 20.16% 24.91% 

Topography 

       
 



EEG-based classification of imagined speech rhythm 

 

16 
 

Another interesting observation is that the best SOI features, when viewed across subjects, are almost all 
features in the time domain.  These features include F2, the average time distance between neighbouring 
SOIs, and F3, the average SOI duration.  For only one subject is a frequency-domain SOI feature most 
informative; feature F4, the SOI central frequency, is most informative for S2.  From the topographic 
distribution of the most highly weighted data point, we see that five out of seven contrast anterior and 
posterior regions of cortex.  However, for the best performing subject, S6, the contrast is between left and 
right hemispheres.  In general, the classification benefits from a feature vector containing more features 
and components; the most highly weighted feature usually carries less than 30% of total classification 
power.  An example of the distribution of classification weights by SOBI components and time-frequency 
attributions is shown in Figure 7.  This figure shows that the SOI duration (F3) and inter-SOI interval (F2) 
contribute most to the overall discriminability among imagined speech rhythms for best-performing 
subject S6.  Specifically, the value of F3 gradually decreases from rhythm 1 to 3. 

 

 

Figure 7. Linear classifier weight for subject 6. The height of each bar section reflects the weight of the 
corresponding SOBI component.   

 

3.2  Averaging-based classification of imagined speech rhythm 

As a comparison to the HHT-based classification results, we analyzed the imagined speech data obtained 
from our best performing subject S6 using conventional averaging algorithms in three domains:  temporal, 
spectral and time-frequency. 

The results of classification based on time-domain averages are summarized numerically in the first row 
of Table 3 ("Temporal LDA"); channel classification rates for S6 are shown topographically in the 
leftmost panel of Figure 8.  The classification performance for this method is only 39% (vs. the chance-
level performance of 33%).   
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The results of classification based on frequency-domain averages are shown in the second row of Table 3 
("Spectral LDA"); channel classification rates are shown in the middle panel of Figure 8.  The resulting 
classification performance 40% is not much better than for the time domain. 

The third analysis involved the application of matched filters based on class-average spectrograms.  The 
results for subject S6 are shown in the third row ("Spectrogram matched filter") of Table 3.  The resulting 
classification performance 67% is statistically highly significant and begins to rival the classification rate 
of 73% found using the SOBI-HHT algorithm.  

Table 3. Averaging-based classification results. 
 Accuracy Significance 
Temporal LDA 38.67% 0.0226 
Spectral LDA 40.33% 0.0047 
Spectrogram matched filter 66.50% 0.0000 
 

3.3  HHT-based decoding of heard rhythm 

Conceptually, this analysis may be conducted independently of the imagined rhythm classification by 
performing a separate SOBI procedure to generate spatial mixings specific to EEG recorded during the 
click cue periods.  Yet such treatment can complicate the problem and make it difficult to compare results 
from click cue and imagination periods.  We thus used the same set of SOBI mixings for the click cue 
periods as in the imagination periods.  While this choice may lead to sub-optimal classification results, 
the results are likely similar to those obtained from independent analyses of the two period types, because 
the most informative SOBI spatial mixings tend to contrast large-scale patterns.  The HHT and supra-
thresholding procedures were performed independently for click cue and imagination periods, while the 
threshold criteria and partitioning of trials for the click cue periods were kept identical to those for the 
imagination periods.   

The results are summarized in Table 4.  All seven subjects show higher classification rates for the click 
cue period data than for the imagination data (see also Table 2).  The linear classifier weights of S6 are 
shown in Figure 8.  The click cue period classifier still uses more information in the time domain than in 
the frequency domain.  Yet compared to results for the imagination periods (Fig. 7), one finds that the 
relative importance of temporal features differs; the most informative feature is the average time distance 
(F2) followed closely by the number of SOIs (F1).  
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Table 4. Classification result based on click cue period  

 Accuracy Category Weight 
S1 68.00% F1 18.57% 

S2 71.67% F1 19.45% 

S3 59.67% F3 23.35% 

S4 66.33% F2 34.83% 

S5 60.67% F3 27.44% 

S6 73.67% F2 22.05% 

S7 54.67% F2 30.14% 

 

 

Figure 8. Click cue period linear classifier weights for S6 

 

4. Discussion 

The problem of recognizing imagined speech via brain signals is similar to the problem of recognizing 
speech automatically at a cocktail party, except that the party is now more clamorous and our recording 
equipment is set behind a thick wall of bone and tissues.  In situations like this, a human listener will 
typically try his or her best to focus on the vocal source by tracking its acoustic properties, like pitch and 
volume fluctuations, and worry about meaning only after successfully segregating the source stream from 
the noise and performing an initial segmentation.  For much the same reason, we consider the 
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classification of imagined speech rhythm an indispensable step toward EEG-based recognition of 
imagined speech.  

4.1  Hilbert Spectra captures more information than conventional time-frequency  methods 

The fact that brain signals are generally not stationary calls for analytic methods that use representations 
which are richer than those available in time or frequency domains alone and account for the increasingly 
wide application of joint time-frequency analysis techniques (Vialatte et al. 2007).  The Hilbert-Huang 
Transform is an emerging time-frequency decomposition method that offers several advantages over 
short-time Fourier transform and wavelet decompositions.  First, it does not project data onto a constant 
basis; rather, it adjusts the frequency band of interest adaptively based on the signal envelopes.  Second, 
the time and frequency resolutions of HHT are also adaptive, so that this method potentially provides far 
more accurate estimates over regions of interest (Huang and Shen 2005).  These properties are 
particularly useful in our problem, because discriminating among different rhythmic conditions depends 
on distinguishing changes in power and frequency at intervals substantially shorter than one sec. 

The results of traditional averaging-based methods show that classification benefits from the use of both 
temporal and spectral information; the two classifications based on content in just a single domain are not 
significant at α = 0.001 level.  In contrast, the performance of the spectrogram matched filter method, 
although not as high as that with the SOBI-HHT algorithm, is very promising.  One possible reason for 
the performance difference between the spectrogram matched filter method and the SOBI-HHT method is 
that the matched filters are based on class-average spectrograms and, so, do not take into account possible 
phase shifts in the underlying signals.  Class-average spectograms are blurred by such phase shifts.  This 
is not true for the SOBI-HHT; its suprathresholding makes it robust in the face of such shifts.  There 
could also be an effect of difference in resolution between STFT and HHT.  Finally, the SOBI step in our 
method congregates more informative channels to outperform any single one. 

The computational complexity of HHT is orders of magnitude greater than that of classical spectral 
analysis methods such as FFT.  This remains a major hindrance to the implementation of HHT in real-
time analysis.  With the development of faster computers and better algorithms, we expect that this 
problem will diminish.  Yet we investigated also a spectrogram matched filter method, which is based on 
class-average spectrograms.  This method classified imagined speech rhythm in these experiments well, if 
not as well as the HHT method.  Its major advantage is a far lesser computational complexity.  We expect 
that HHT method classification performance can be improved.  For example, the thresholds that were 
used to binarize the Hilbert spectra were determined ad hoc.  We expect better classification performance 
if these parameters are determined quantitatively for each subject using a larger set of training data.  

4.2  SOBI provides automatic spatial mixing and noise reduction. 

Due to the superficial positions of EEG electrodes on the scalp, the true signals of neuronal origin are 
almost always contaminated by noise of various sorts.  Blind-source separation techniques have proven  
very effective at removing statistically uncorrelated noise and at boosting SNR to facilitate further 
analyses (Tang et al 2005, Cichocki and Thawonmas 2000).  In this study, the SOBI procedure is crucial 
to the success of the further joint time-frequency decomposition because it acts not only to reduce 
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artefacts but also to automatically generate specific spatial patterns which help contrast different cortical 
regions (Dornhege et al 2006).  We use SOBI instead of other PCA and ICA algorithms because SOBI 
takes account of the time-variant nature of our signal. However, for the purpose of reducing artefact, ICA 
is likely also sufficient as a preprocessing step before joint time-frequency decomposition of the data.  We 
extended the classical SOBI algorithm to process multi-channel multi-trial recordings, and although the 
current analysis is completely offline, we expect that the SOBI filters generated from training sessions can 
be readily used during online classifications as well. 

The SOBI algorithm provides an automatic scheme to mix all channels in a way that maximizes cross-lag 
inter-component separation (Delorme et al. 2007).  In most cases, the performance of single channels will 
fall behind that of the SOBI components.  Yet, just as is found with most data rotation methods, the 
automatically-generated spatial patterns may vary across subjects, which can make them difficult to 
interpret.  The most significant of the automatically-generated weight maps usually vary slowly across 
space, as is shown by the topographies in Figure 2 and in Table 2.  For example, the most significant 
component for four of our subjects, S1, S3, S5, and S7, contrasts the occipital and lower temporal-parietal 
regions with mid-frontal regions.  Contrast between left and right temporal-parietal channels can also 
produce valuable results, as shown in S6.  Conceivably, this specific pattern (component 2 of Figure 2) 
contrasts responses of auditory origins, and is consistent with ERP and BCI literatures (Osman et al. 2006; 
Kruif et al. 2007).  In addition, although the distributions of SOBI component vary across subjects, our 
experience is that on the same subject the pattern is generally consistent across trials within the same 
recording session.  For instance, we compared the patterns contrasting the occipital and frontal regions for 
different trials of the same subject, and the correlations are in the range of 0.8 ~ 0.9.  Such consistency 
ensures that for the same subject the SOBI analysis only needs to be performed once and the resulting 
loading patterns may potentially be used in future recordings or BCI applications.   

4.3  A step toward EEG-based classification of imagined speech.  

Our results suggest that information extracted from time-frequency representations of EEG data can be 
used to predict imagined speech rhythm.  The temporal information is more informative; in six of seven 
subjects, we found that the most significant type of feature is in the temporal domain. This finding 
confirms one's intuition that brain activity during imagined speech should bear some similarity to the 
temporal structure of the speech itself.  Among temporal features, the average time span of SOIs proved 
to be the most informative one.  For the subject providing the greatest accuracy in predictive classification, 
increasing the rate at which syllables are produced is correlated with decreasing SOI duration.  This result 
suggests that certain features of EEG signals recorded during imagined speech production carry 
information concerning the temporal structure of the underlying neuronal dynamics, and that this structure 
is highly consistent with that of its overt, vocalized, counterpart.  Given enough temporal resolution and 
signal gain, we expect to be able eventually to use this isomorphism to recognize more complex rhythms 
in a real-time fashion and to provide concrete steps toward the development of EEG-based 
communication of imagined speech. 

Previous research shows that sensory responses to heard speech may be decoded from both MEG 
(Numminen et al. 1999; Houde et al. 2002; Luo & Poeppel 2007) and EEG (Deng & Srinivasan 2010).  
We used the SOBI-HHT method to classify EEG generated during the click trains which were used at the 
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beginning of each trial to cue the rhythm with which imagined speech was then generated.  EEG 
responses to these heard clicks could be classified using the HHT method with greater accuracy than EEG 
responses produced during imagined speech.  The features which proved most informative for classifying 
click train rhythm differed from those most informative for classifying imagined speech (of the same 
rhythms).  The change in feature weight distribution is likely to be closely related to the phase locking of 
responses evoked by rhythmic sensory inputs (Snyder and Large 2005; Zanto et al. 2006).  During 
imagination periods, such evoked responses are absent.  Instead, the endogenously driven modulation of 
perception induces less precisely time-locked responses which are characterized better by their overall 
time spans. 

The classification of implicit thoughts has a self-contradictory nature, since objective verification that 
subjects are performing the desired tasks in some manner independent of the brain-imaging data is not 
forthcoming.  Although we obtained 72.67% classification performance of imagined speech rhythm for 
our best subject, there is some extent to which we do not know whether this number represents the 
classification of genuine EEG due to imagination or represents classification based on interference factors 
like artefacts or sustained evoked responses from cueing.  Nevertheless, researchers should not be daunted 
by these technical or methodological issues, as they may only be answered by further exploration in this 
field. 
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