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ABSTRACT 

The problem of separation of mixed signal spectrum is 

encountered in many engineering systems. One such problem is a 

problem of electromagnetic topology wherein mixed signals at 

spatial points are encountered and one would like to separate them 

out using digital signal processing tools. This paper discusses 

techniques such as fast Fourier transform, short term Fourier 

transform, wavelet transform and Hilbert Huang transform in light 

of this application. Advantages and limitations of each technique 

are bought out for above said problem.  

In a computational EMI problem, for a given EM topology, field 

values in problem domain can be computed using conventional 

numerical techniques such as finite difference method, finite 

element method, etc. However for a real time application, these 

techniques are of little use as they require large computation time. 

One would like to have fast computations if on-line real time 

dynamic error correction is required for quantities being 

measured. This paper describes one such approach applicable to 

control room EMI problem to obtain best estimates of weak signal 

being measured in noisy surroundings. The techniques used are 

Bayesian approaches such as Kalman filter and its variants.   

Keywords 
Signal, wavelets, Kalman filter. 

1. INTRODUCTION 
Mixed signal is a signal formed by mixture of arbitrary waves of 

various amplitudes, frequencies, phases along with noise. These 

noise can be of varied nature may be Gaussian, non-Gaussian, 

mixture of several Gaussians, etc. Mixed signal separation is 

carried out by using various signal separation tools. These inclu- 

-de conventional tools such as Fourier transform, Short term 

Fourier transform, Wavelets, Hilbert transforms and many other  

advanced transform techniques such as Hilbert Huang transform 

(HHT). In many engineering systems, signal measured can be 

function of one or more physical phenomenon occurring inside 

system. In other words, sensor signal can be an indicator of 

various activities taking place inside system under consideration. 

One would like to separate out these physical phenomenon's 

which also indicate abnormal situations arising inside a given 

system. A separation of detector signal essentially aims at finding 

out all these events happening inside a system.  

In a control room having noisy environment, a weak signal 

arriving from plant on cable gets further corrupted depending on 

number of EMI sources, source strengths and distance of cable 

from these sources. One would like to evolve a strategy or method 

to minimize effect of these EMI due to these sources on weak 

signal/s. Further, by measuring EMI at various points in a control 

room, it is possible to correct or compensate for effect of EMI into 

any sensitive equipment placed at a given location. This method 

of compensation is called as dynamic error correction. In order to 

arrive at the amount of correction to sufficient accuracy, Kalman 

filters can be used. 

Section 2 of paper describes basics of Wavelet transforms and 

comparisons with Fourier transforms. Section 3 is about HHT and 

section 4 is about basics of Kalman filters and augmented state 

Kalman filters. Section 5 describes conversion of Maxwell's 

equations into state space form. Simulations described in section 6 

justify HHT as better tool for EMI signal processing. In addition 

solution of EMI problem in 1D and 2D problem domain are also 

addressed followed by proposed method of dynamic error 

correction. 

2. FOURIER TRANSFORMS VS 

WAVELET TRANSFORM 
The Fourier transform's utility lies in its ability to analyze a signal 

in the time domain for its frequency content. The transform works 

by first translating a function in the time domain into a function in 

the frequency domain. The signal can then be analyzed for its 

frequency content because the Fourier coefficients of the 

transformed function represent the contribution of each sine and 

cosine function at each frequency. The discrete Fourier transform 

(DFT) estimates the Fourier transform of a function from a finite 

number of its sampled points.  

The windowed Fourier transform (WFT) [9] is one solution to the 

problem of better representing the non-periodic signal. The WFT 

can be used to give information about signals simultaneously in 

\ 
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the time domain and in the frequency domain. With the WFT, the 

input signal f(t) is chopped up into sections, and each section is 

analyzed for its frequency content separately. This windowing is 

accomplished via a weight function that places less emphasis near 

the interval's endpoints than in the middle. The effect of the 

window is to localize the signal in time. WFT or short time 

Fourier transform (STFT) is defined as in eqn. (1). 

     (1) 

where, g(t) is basis function used for analysis of signal x(t). 

Continuous wavelet transform (CWT) of signal x(t) is defined as, 

     (2) 

 

Here, Φ(t) is basis function for CWT. The most interesting 

dissimilarity between these two kinds of transforms is that 

individual wavelet functions are localized in space however, 

Fourier sine and cosine functions are not. This localization 

feature, along with wavelets localization of frequency, makes 

many functions and operators using wavelets "sparse" when 

transformed into the wavelet domain. This sparseness, in turn, 

results in a number of useful applications such as data 

compression, detecting features in images, and removing noise 

from time series. Figure 1 shows a WFT, where the window is 

simply a square wave. Because a single window is used for all 

frequencies in the WFT, the resolution of the analysis is the same 

at all locations in the time-frequency plane. 

 

 

 

 

 

 

 

 
Figure 1. Time 

frequency analysis using windowed Fourier transforms 

An advantage of wavelet transforms is that the windows vary. In 

order to isolate signal discontinuities, very short basis functions 

are required while to obtain detailed frequency analysis, very long 

basis functions are required. A way to achieve this is to have short 

high-frequency basis functions and long low-frequency ones. This 

is obtained from wavelet transforms. Figure 2 shows the coverage 

in the time-frequency plane with wavelet function, the Daubechies 

wavelet [2]. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Time frequency analysis using continuous wavelet 

transforms 
WFT cannot handle nonlinear and nonstationery signals. Though 

wavelets are capable of handling nonstationery signals, their 

capability to handle nonlinear signals are limited. 

2.1 The Sub-band Coding and the Multi-

resolution Analysis 
The main idea is same as it is in CWT. A time-scale representation 

of a digital signal is obtained using digital filtering techniques. 

CWT is a correlation between a wavelet at different scales and the 

signal with the scale (or the frequency) being used as a measure of 

similarity. The continuous wavelet transform is computed by 

changing the scale of the analysis window, shifting the window in 

time, multiplying by the signal, and integrating over all times. In 

the discrete case, filters of different cutoff frequencies are used to 

analyze the signal at different scales. The signal is passed through 

a series of high pass filters to analyze the high frequencies, and it 

is passed through a series of low pass filters to analyze the low 

frequencies. 

The resolution of the signal, which is a measure of the amount of 

detail information in the signal, is changed by the filtering 

operations, and the scale is changed by up sampling and down 

sampling (sub sampling) operations. Sub sampling a signal 

corresponds to reducing the sampling rate, or removing some of 

the samples of the signal. The filter bank can be illustrated as in 

figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure3. The Sub band Coding Algorithm 

2.2 APPLICATION TO SYNTHETIC 

SIGNAL 
Synthetic signal comprising of 70 Hz and 750 Hz sine wave with 

resolution of 20 microseconds with noise added (normally 

distributed with standard deviation of 0.2882 and zero mean) was 

generated. Figure 4 shows this generated signal. Figure 5 shows 

discrete wavelet decomposition of this noisy sine wave. In 
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uppermost plot, the original sine wave as seen in figure 4. Second 

plot in figure 5 shows level 3 approximation coefficients (in red) 

and its comparison with original signal. Third, fourth and fifth 

plot in figure 5 show the detail coefficient d3, d2 and d1. This is 

wavelet decomposition in time domain using wavelet 'db2'. Thus, 

separation can be carried out easily using discrete wavelet 

decomposition. 
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Figure 4.  Plot of noisy synthetic signal 
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Figure 5. Three level wavelet decomposition using ‘db2’ 

3. INTRINSIC MODE FUNCTIONS, 

HILBERT HUANG TRANSFORM AND 

EMPIRICAL MODE DECOMPOSITION 
The essence of Empirical mode decomposition (EMD) method is 

to identify the intrinsic oscillatory modes by their characteristic 

time scales in the data empirically, and then decompose the data 

accordingly. An intrinsic mode function (IMF) represents a simple 

oscillatory mode as a counterpart to the simple harmonic function, 

but it is much more general: instead of constant amplitude and 

frequency, as in a simple harmonic component, the IMF can have 

a variable amplitude and frequency as functions of time. With the 

above definition for the IMF, one can then decompose any 

function using sifting process [8]. The sifting process serves two 

purposes: to eliminate riding waves and to make the wave profiles 

more symmetric. While the first purpose must be achieved for the 

Hilbert transform to give a meaningful instantaneous frequency, 

the second purpose must also be achieved in case the neighboring 

wave amplitudes have too large a disparity. Toward these ends, 

the sifting process has to be repeated as many times as is required 

to reduce the extracted signal to an IMF. The sifting process can 

be stopped finally by any of the following predetermined criteria: 

either when the component or the residue becomes so small that it 

is less than the predetermined value of substantial consequence, or 

when the residue becomes a monotonic function from which no 

more IMFs can be extracted.   

Thus, a decomposition of the data into n-empirical modes is 

achieved, and a residue is obtained which can be either the mean 

trend or a constant. Therefore, total signal x(t) can be represented 

as,  

     (3) 

 

Contrary to almost all the previous methods, this new method is 

intuitive, direct, a posteriori and adaptive, with the basis of the 

decomposition based on, and derived from the data. A 

comparative summary of Fourier, wavelet and HHT analysis is 

given in table 1. This table shows that the HHT is indeed a 

powerful method for analyzing data from nonlinear and non-

stationary processes. It is based on an adaptive basis and the 

frequency is derived by differentiation rather than convolution. 

Therefore, it is not limited by the uncertainty principle. It is 

applicable to nonlinear and non-stationary data and presents the 

results in time-frequency-energy space for feature extraction. 

Table 1. Comparison of capabilities of Fourier, Wavelet and 

Hilbert transform 

 Fourier Wavelet Hilbert  

Basis  apriori  apriori adaptive 

Frequency   Global 

uncertainty  

Regional 

uncertainty  

Local 

uncertainty 

Presentation energy-

frequency 

energy-

time-

frequency 

energy-

time-

frequency 

Nonlinear  no no yes 

Nonstationary  no yes yes 

Feature 

extraction  

no discrete: no, 

continuous: 

yes 

yes 

Theoretical 

base   

theory 

complete 

theory 

complete 

empirical 

4. KALMAN FILTER AND BAYESIAN 

ESTIMATION 
A Kalman filter is an optimal recursive data processing algorithm. 

It processes all available measurements, regardless of their 

precision, to estimate the current value of the variable/s of 

interest, with use of, 

1) Knowledge of the system and measurement device dynamics. 

2) The statistical description of the system noises, measurement 

errors, and  uncertainty in the dynamics models and 

3) Any available information about initial condition of the 

variables of interest. 

( )
1

n
x t c rnj

j
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Rather than ignore any of the outputs from system, a Kalman filter 

could be built to combine all of this data and knowledge of the 

various system dynamics to generate an overall best estimate of 

states of system [7, 5, 1]. Often the variables of interest, some 

finite number of quantities to describe the state of the system, 

cannot be measured directly, and some means of inferring these 

values from the available data must be generated. For instance, an 

air data system directly provides static and pitot pressure, from 

which velocity must be inferred. This inference is complicated by 

the fact that the system is typically driven by inputs other than 

known controls and that the relationships among the various state 

variables and measured outputs are known only with some degree 

of uncertainty. Furthermore, any measurement will be corrupted 

to some degree by noise, biases and device inaccuracies, and so a 

means of extracting valuable information from a noisy signal must 

be provided as well. There may also be a number of different 

measuring devices, each with its own particular dynamics and 

error characteristics that provide some information about a 

particular variable, and it would be desirable to combine these 

outputs in a systematic and optimal manner. A Kalman filter 

combines all available measurement data, plus prior knowledge 

about the system and measuring devices, to produce an estimate of 

the desired variables in such a manner that the error is minimized 

statistically. There are many means of accomplishing this 

objective. If a Bayesian viewpoint is adopted, than the filter 

propagates the conditional probability density of the desired 

quantities, conditioned on knowledge of the actual data coming 

from the measuring devices. The set of measurement data z will 

be assumed to be a linear combination of the variables of interest 

(say X), corrupted by an uncertain measurement disturbance v of 

dimension m: 

z = HX + v  

where, H is known m by n matrix. Let v be a Gaussian random 

variable characterized by mean 0 and covariance R, and assume 

that v and X are independent. State space model of system can 

now be represented as, 

.

( ) ( ) ( ) ( ) ( ) ( ) ( )t t t t t t tX = F X + B u + G w                                  (4) 

( ) ( ) ( ) ( )t t t t
i i i i

z = H X + v                             (5) 

where X(t) is the system state, w(t) and v(ti) are white  Gaussian 

noises, assumed independent of each other and of initial condition 

X(t0) = X0, where X0 is a Gaussian  random variable.  These noises 

model not only the disturbances and noise corruption that affect 

the system, but also the uncertainty inherent in the mathematical 

models themselves. It is desired to combine the measurement data 

taken from the actual system with the information provided by the 

system model and statistical description of uncertainties, in order 

to obtain an optimal estimate of the system state. The optimal 

state estimate is propagated from measurement time ti-1 to 

measurement time ti by the relation, 

^ ^

( ) ( , ) ( ) ( , ) ( ) ( )1 1
1

ti
t t t t t di i ii i

t
i

φ φ τ τ τ τ− +
∫− −
−

X = X + B u             (6) 

( ) ( , ) ( ) ( , )
1 1 1

T
t t t t t ti i ii i i
− +

+− − −P = Pφ φφ φφ φφ φ

( , ) ( ) ( ) ( ) ( , )1 1
1

ti T
t t di i

t
i

Ττ τ τ τ τ τ∫ + +
−

G Q Gφ φφ φφ φφ φ                              (7) 

Here, ( , )1t ti i−φφφφ is state transition matrix, ( )ti
−

P is apriori state 

error covariance, Q is covariance in state noise w with G as its 

strength. At measurement time ti, the measurement zi becomes 

available. The estimate is updated by defining the Kalman filter 

gain ( )tiK and employing it in both mean and covariance 

relations [7]. Then,  

1
( ) = ( ) ( ) ( ) ( ) ( ) + ( )

- T - T
t t t t t t ti i i i i i i

−
  K P H H P H R           (8) 

ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )
+ - -
t t t t ti i i i i i−  X = X + K z H X                   (9) 

( ) ( ) ( ) ( ) ( )
+ - -
t t t t ti i i i iP = P -K H P                                   (10) 

Here, ˆ ( )
+
tiX is posteriori state estimate and  ( )

+
tiP is posteriori 

state error covariance. The initial conditions for recursion are  

given by, 

ˆ ˆ( ) ( )0 0 0t E t =  X = X X                                                  (11) 

{ }ˆ ˆ( ) ( ) ( )0 0 0 0 0 0

T
t E t - t - =      P = X X X X P                 (12) 

Figure 6 shows the block diagram of Kalman filter. 

 
Figure 6. Sampled data Kalman filter block diagram 

 

4.1  Discrete Kalman filter 
The Kalman filter estimates state of a process by using a form of 

feedback control: the filter estimates the process state at some 

time and then obtains feedback in the form of (noisy) 

measurements. The equations for the Kalman filter fall into two 

groups: time update equations and measurement update equations. 

The time update equations are responsible for projecting forward 

(in time) the current state and error covariance estimates to obtain 

the apriori estimates for the next time step. The measurement 

update equations are responsible for the feedback i.e., for 

incorporating a new measurement into the apriori estimate to 

obtain an improved aposteriori estimate. The time update 

equations can also be thought of as predictor equations, while the 

measurement update equations can be thought of as corrector 

equations. Indeed the final estimation algorithm resembles that of 

a predictor-corrector algorithm for solving numerical problems as 

shown in figure 7. 

Converting eqn. (6) to eqn. (10) into discrete form by replacing ti, 

by k and ti-1,by k-1, the following set of time update equations 

(13) and (14) and measurement update equations (15), (16) and 

(17) are obtained. 
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Figure 7. The ongoing discrete Kalman filter cycle 

ˆ ˆ
, 1 1 , 1 1k k k k k k k− − − −X = A X + B u                                 (13) 

, 1 1| 1 , 1
T

Q
k k k k k k k− − − −P = A P A +                                   (14) 

1
= +| 1 | 1

T T
k k k k k k k k k

−

− −
 
 K P H H P H R                          (15) 

| | 1 | 1k k k k k k k k− −P = P -K H P                                                (16) 

( )ˆ ˆ ˆ
| , 1 1| 1 , 1 1| 1k k k k k k k k k k k k k

−− − − − − −X = A X + K z H A X    (17)                                                                                          

The symbols have equivalent meanings as described previously. 

Figure 8 offers a complete picture of the operation of the filter. 

 

Figure 8:  A complete picture of the operation of the filter 

4.2 Augmented state Kalman filter 
In many instances, the state space model contains parameters 

which may deviate by constant but unknown amounts from their 

nominal values. Use of the nominal values of the parameters in 

the filter design leads to unacceptably large errors in the estimate 

provided by the filter [4]. To reduce the estimation errors which 

could arise from such incorrect modeling, it is a common practice 

to augment the state vector of the original problem by adding 

additional components to represent the uncertain parameters, 

which are conveniently designated as bias terms. The filter then 

estimates the bias terms as well as those of the original problem. 

This method is reasonably effective when the number of bias 

terms is small relative to the state variables of the original 

problem; the dimension of the state vector is then not significantly 

increased by adjoining the state variables which are used to 

represent the bias terms. The recursive algorithm for augmented 

state Kalman filter is almost same as that for Kalman filter with 

modifications that it estimates bias and its covariance. 

 

5. CONVERSION OF N-DIMENSIONAL 

MAXWELL'S EQUATION INTO STATE 

SPACE FORM 
To address an EMI problem, let us consider Maxwell's equations 

[12, 3], 

t

∂
∇ × =

∂

B
E                          (18) 

t

∂
∇ × = +

∂

D
H J                                     (19) 

ρν∇ • =D                       (20) 

0∇ • =B                       (21) 

Here, E is electric field strength, B is magnetic flux density, D is 

electric flux, H is magnetic field strength, J is current density and 

ρν  is volume charge density. Along with above four Maxwell's 

equations, following three constitutive relations are required. 

σ=J E                                                    (22) 

ε=D E                                          (23) 

µ=B H                                      (24) 

Here, σ, ε and µ are conductivity, permittivity and permeability of 

medium respectively. Assume electric field is in y-direction and 

magnetic field is in z-direction. It is possible to convert four 

Maxwell's equations (for 1D case) into form [6], 

( , ) ( , )
0

( , ) ( , )
0

e x t e x t

t t

b x t b x tt

t t

σ

ε
σ

ε

∂ ∂
−

∂ ∂ ∂= +
∂ ∂∂ −

∂ ∂

    
    
    
    
    

 

2
1 ( , )

0
2

21 ( , )
0

2

e x t

x

b x t

x

µε

µε

∂

∂

∂

∂

  
  
  
      

                      (25) 

If,  

( , )
0

,
( , )

0

e x t

t

b x t

t

σ

ε
σ

ε

∂
−

∂= =
∂

−
∂

   
   
   
   
   

X A  

     

2
1 ( , )

0
2

, 21 ( , )
0

2

e x t

x

b x t

x

µε

µε

∂

∂= =
∂

∂

  
  
  
        

uB  

then eqn. (25) can be written in standard state space form, 

= +X X u& A B                                      (26) 

Hence, by applying standard state space equation solution 

techniques one can solve electromagnetic field problem. It is 

possible to extend eqn. (25) to 2D case by replacing 

2

2
x

∂

∂
  by 

2 2

2 2
x y

∂ ∂
+

∂ ∂

 
 
 

. For extending to 3D case, replace it by 

2 2 2

2 2 2
x y z

∂ ∂ ∂
+ +

∂ ∂ ∂

 
 
 

. 

6. SIMULATION RESULTS 
Assume a 1D problem with dominance of magnetic field. Since 

eqn. (25) has second partial derivative with respect to spatial 
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variable x, in order to find out  B(x,t) knowledge of B is needed as 

function of spatial co-ordinates x. As per Biot's Savart's law, B at 

any point at distance r away from source varies inversely 

proportional to r2. Hence for ith sinusoidal source having unity 

strength and frequency iω , input to state space eqn. (25) becomes, 

For a 1D case, 

( )2
sin

2 2

ti
ui

x x

ω∂
=

∂

 
 
 

 

( )sin
6

4

ti

x

ω
=

 
 
 

 

For a 2D case, 

( ) ( )2 2
sin sin

6
2 2 2 2 4 4

t ti i
ui

x y x y x y

ω ω∂ ∂
= + =

∂ ∂ + +

    
    

    
 

For a 3D case, 

( )2 2 2
sin

2 2 2 2 2 2

ti
ui

x y z x y z

ω∂ ∂ ∂
= + +

∂ ∂ ∂ + +

  
  

    

( )sin
6

4 4 4

ti

x y z

ω
=

+ +

 
 
 

 

Since σ, ε and µ are known, matrices A and B are known. 

6.1 Application of HHT to a 1D problem of 

electromagnetic topology 
Problem statement: Amidst multiple EMI sources, determine co-

ordinates at which minimum E field or B field exists so that 

sensitive equipment can be placed there. Also, determine the 

frequency contents of signal so that susceptibility of equipment to 

each frequency can be determined. Limiting to 1D case (i.e., 

collinear B field sources), consider three sources. First one with 

excitation as 10 Hz sine wave, second one with quadratic chirp 

excitation from 5 Hz to 50 Hz, while third one has excitation as 80 

Hz. Time domain signals can be seen in figure 9. The strength of 

B field at various locations in 1D problem can be found out by 

solving state space eqn. (26). The result can be seen in form of 

figure 10. 
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Figure 9. Time domain source excitation signals for EMI 

problem 
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Figure 10. Strength of B field at various locations 
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Figure 11. FFT of B field signal at various locations 

The FFT plot shown in figure 11 does not provide any significant 

information about frequency content at each location especially 

about non-stationarity of one of the sources. HHT applied to B 

field signal near source 1 results in Hilbert spectrum as seen in 

figure 12. 
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Figure 12. HHT spectrum of B field signal at location near 

source 1 

HHT applied to B field signal between source1 and source2 

results in Hilbert spectrum as seen in figure 13. For comparison 

purpose, figure 14 shows spectrogram of B field signals at same 

location as in figure 13. Clearly, it can be seen that unlike FFT, 

HHT is able to show clearly the presence of stationary as well as 

non-stationary components in mixed signal at this location. 
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Figure13. HHT spectrum of B field signal at location between 

source 1 and source 2 

6.2 Application to a 2D problem of 

electromagnetic topology 
Limiting problem to 2D case and solving state space eqn. (26), 

gives 
t

∂

∂

B
, integration of which gives B(x,y,t). Thus, B field 
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Figure14. Spectrogram of B field signal at location between 

source 1 and source 2 

 
distribution in 2D problem domain can be determined. This can 

be better understood by following 2D example problem. Consider 

four EMI sources placed as in figure 15 having magnetic 

dominance, each emitting sinusoidal magnetic field of different 

strength but of known value. Assume that source S2 has highest 

strength among all four sources. 

 
Figure 15.  Problem domain for an EMI topology problem 

Solution of B field at various spatial points gives B field 

distribution as seen in figure 16. These simulations give two 

important information: Firstly, it is possible to determine point of 

minimum B, thus optimal positional placement of sensitive 

equipments can be determined easily. Secondly, if a sensitive 

instrument is placed at any point (x,y) amidst these EMI sources, 

an online solution of eqn. (25) for a known strength of all sources 

can be estimated. Hence, a correction signal can be generated for 

this instrument reading. Note that solution of state space equation 

given by eqn. (26), does not require high amount of computations 

as is required by conventional finite element method (FEM), finite 

difference method (FDM), etc [10]. Thus, this method works in 

favor of real time implementation. The process of dynamic error 

correction can be understood from figure 17. The correction 

estimated by this method needs to be accurate enough to correct 

for instrument reading. Often, there is an uncertainty associated 

with  A and B matrices of eqn. (26) due to uncertainty or time 

varying nature of media properties (σ, ε and µ in present case). 

These uncertainties [11] can be modeled as noise terms and hence 

Kalman filter algorithm is useful here. Thus, solving state space 

model eqn. (26) by Kalman filter algorithm given by equations 

(13) to (17) gives an accurate estimate of B(x,y,t), thus giving an 

accurate error compensation. 
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Figure 16.  B field distribution for an EMI topology problem 

 

Figure 17.  B field distribution for an EMI topology problem 

 

Such strategy cannot be implemented by conventional numerical 

method based solutions as they require large computation time 

due to intense computations they carry out. Such limitation does 

not arise for solution of state space equation for Maxwell's 

equations (i.e., eqn. (25) which aims at solving for B field only at 

desired location. 

7. CONCLUSIONS 
The combination of the empirical mode decomposition (EMD) 

method and the associated Hilbert spectral analysis has offered a 

powerful method for nonlinear and non-stationary data analysis. 

Central to the present approach is the sifting process to produce 

the IMFs, which enables complicated data analysis. The 

expansion in terms of the IMF basis has the appearance of a 

generalized Fourier analysis with variable amplitudes and 

frequencies. It is local and adaptive method in frequency time 

analysis. A great advantage of EMD and Hilbert spectral analysis 

is the effective use of the data. The advantages were illustrated 

through a problem of signal separation encountered in 

electromagnetic interference topology determination. 

Kalman filter is a tool which works as an estimator given a model 

describing the underlying phenomenon which generates the signal 

to be estimated. More general estimators are augmented state 

Kalman filters which take care of bias present in any of states of a 

system under consideration. It is possible to express Maxwell's 

equations into state space form. The solution of EM topology 

problem, gives confidence that this conversion is valid. Since 

Kalman estimation relies on existence of process model, this 

conversion is useful. The application mentioned in this paper 

proposed that it is possible to use the state space model of 

Maxwell's equations along with Kalman filter algorithm to carry 

out dynamic error correction for sensitive signals arriving in a 

noisy control room. 
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