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Abstract

An approach to analyze the period of a signal based on Hilbert-Huang Trans-
form is presented in this paper. For an approximately periodic signal which contains
plenty of high frequency components, the relation between its period and its main
frequency is established. Our main result is that, for an approximately periodic sig-
nal which contains plenty of high frequency components, its period can be estimated
accurately according to its main-frequency distribution. By applying the technique
on texture analysis, a novel method to extract the perodicity features of a tex-
ture image is developed, which can be used in texture classification, segmentation,
recognition and other applications.

Keywords: Empirical mode decomposition(EMD), Hilbert-Huang Transform(HHT),
Texture analysis

1 Introduction

Hilbert-Huang Transform (HHT) is a novel analysis method for nonlinear and non-stationary
data, which was developed by Huang et al [5] in 1998. Its key part is the so-called empirical
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mode decomposition (EMD), with which any complicated data set can be decomposed into
finite (often less) number of intrinsic mode functions (IMFs) which admit well-behaved
Hilbert transforms. With Hilbert transform, the IMFs yield instantaneous frequencies as
functions of time, that give sharp identifications of imbeded structures. The final pre-
sentation of the results is a time-frequency-energy distribution, designated as the Hilbert
spectrum. Being different from Fourier decomposition and wavelet decomposition, EMD
has no specified ”basis”. Its ”basis” is adaptively produced depending on the signal itself,
which brings not only high decomposition efficiency but also sharp frequency and time
localization. A key point is that the signal analysis based on HHT is physically signifi-
cant. Because of its excellence, HHT has been utilized and studied widely by researchers
and experts in signal processing and other related fields. In recent years, more and more
works on HHT theory and application are reported such as [3, 2]. Its application on the
signal analysis have spread from earthquake research [9], ocean science [6], biomedicine
[7, 8, 15, 12], speech signal analysis [14] to image analysis and processing [4]. In 2003, J.
C. Nunes et al extended EMD method from one-dimension to two dimension and devel-
oped a decomposition algorithm for two dimension data, which is called Bidimensional
Empirical Mode Deposition (BEMD), and was used to extract texture features at multiple
scales or spatial frequencies [11, 10] and other applications.

Period analysis based on HHT is introduced in this paper. For an approximately
periodic signal containing rich high frequency components, the relation between its period
and its main frequencies is found by analyzing the influence of the signal’s non-linearity
on the distribution of the main frequency. It is used to estimate the period according to
the main frequency distribution (MFD) of a signal in this paper and our experiments show
positive results. Once it is applied into the analysis of natural texture image, the period
characteristic of the texture image can be extracted, which provides the new approach to
texture classification, segment, recognition and image index.

The rest of the paper is organized as follows: Section 2 is a brief summary of Hilbert-
Huang Transform; Analysis of signal period based on HHT is given in Section 3; In Section
4, the theory presented in Section 3 is used to analyzing textures and experiments are
conducted to support our results; Finally, Section 5 is the conclusion of this paper.

2 Hilbert-Huang Transform

Hilbert-Huang Transform (HHT) was proposed by Huang et al [5]. It consists of two
parts: (1) Empirical Mode Decomposition (EMD), and (2) Hilbert Spectral Analysis. With
EMD, any complicated data set can be decomposed into a finite and often less number of
intrinsic mode functions (IMFs). An IMF is defined as a function satisfying the following
conditions:

(a) The number of extrema and the number of zero-crossings must either equal or differ
at most by one;
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(b) At any point, the mean value of the envelope defined by the local maxima and the
envelope defined by the local minima is zero.

An IMF defined as above admits well-behaved Hilbert transforms. EMD decomposes
signals adaptively and is applicable to nonlinear and non-stationary data (Fundamental
theory on nonlinear time series can be found in [1]). In this section, a brief introduction
is given to make this paper somewhat self-contained. The readers are referred to [5] for
details.

For an arbitrary function, X(t), in Lp-class [13], its Hilbert transform, Y (t), is defined
as

Y (t) =
1

π
P

∫ ∞

−∞

X(t′)
t− t′

dt′, (2.1)

where P indicates the Cauchy principal value. Consequently an analytic signal, Z(t), can
be produced by

Z(t) = X(t) + iY (t) = a(t)eiθ(t), (2.2)

where

a(t) = [X2(t) + Y 2(t)]
1
2 , θ(t) = arctan(

Y (t)

X(t)
) (2.3)

are the instantaneous amplitude and phase of X(t).
Since Hilbert transform Y (t) is defined as the convolution of X(t) and 1/t by Eq.

(2.1), it emphasizes the local properties of X(t) even though the transform is global.
In Eq. (2.2), the polar coordinate expression further clarifies the local nature of this
representation. With Eq. (2.2), the instantaneous frequency of X(t) is defined as

ω(t) =
dθ(t)

dt
. (2.4)

However, there is still considerable controversy on this definition. A detailed discussion
and justification can be found in [5].

EMD is a necessary pre-processing of the data before the Hilbert transform is applied.
It reduces the data into a collection of IMFs and each IMF , which represents a simple
oscillatory mode, is a counterpart to a simple harmonic function, but is much more general.
We will not describe EMD algorithm here due to the limitation of the length of the paper.
The readers are referred to [5] for details.

By EMD, any signal X(t) can be decomposed into finite IMFs, imfj(t) (j = 1, · · · , n),
and a residue r(t), where n is nonnegative integer depending on X(t), i.e.,

X(t) =
n∑

j=1

imfj(t) + r(t). (2.5)

For each imfj(t), Let Xj(t) = imfj(t), its corresponding instantaneous amplitude, aj(t),
and instantaneous frequency, ωj(t), can be computed with Eqs. (2.3) and (2.4). By Eqs.
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(2.2) and (2.4), imfj(t) can be expressed as the real part, RP, in the following form:

imfj(t) = RP

[
aj(t) exp

(
i

∫
ωj(t)dt

)]
. (2.6)

Therefore, by Eqs. (2.5) and (2.6), X(t) can be expressed as the IMF expansion as follows:

X(t) = RP

n∑
j=1

aj(t) exp

(
i

∫
ωj(t)dt

)
+ r(t), (2.7)

which generalize the following Fourier expansion

X(t) =
∞∑

j=1

aje
iωjt, (2.8)

by admitting variable amplitudes and frequencies. Consequently, its main advantage over
Fourier expansion is that it accommodates nonlinear and non-stationary data perfectly.

Equation (2.7) enables us to represent the amplitude and the instantaneous frequency
as functions of time in a three-dimensional plot, in which the amplitude is contoured on
the time-frequency plane. The time-frequency distribution of amplitude is designated as
the Hilbert amplitude spectrum or simply Hilbert spectrum, denoted by H(ω, t).

Having obtain Hilbert spectrum, One will have no difficult to define the marginal
spectrum as following:

h(ω) =

∫ T

0

H(ω, t)dt. (2.9)

The marginal spectrum offers a measure of total amplitude(or energy) contribution
from each frequency value.

3 HHT-Based Signal Period Analysis

To be convenient, we give three definitions first.

Definition 3.1 Let x(t) be a arbitrary time series and h(ω) be its marginal spectrum.
Then ωm is called the main frequency of x(t); if h(ωm) ≥ h(ω), ∀ω.

Definition 3.2 Let X = {xj(t) | j = 1, 2, · · · , n}, where each xj(t) is a time series of m
data. Then for any frequency f , the main frequency distribution of X at f is defined as
the number of those xj(t) in X whose main frequencies are f .

Definition 3.3 Let x(t) be a periodic time series with period T and main frequency f .
Then the difference between f and 1/T is defined as main frequency shift, denoted by MFS
briefly.
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To expose the relation between the main frequency and the period of a signal, let us
observe a simple example firstly.

Let x(t) = sin(2πft), f = 0.01. Its marginal spectrum is shown in Fig. 1. One has
no difficult in seeing the main frequency of x(t) is 0.01 which is precisely the reciprocal
of signal period. On the other hand, It is easy to see that the signal energy is mainly
concentrated on the main frequency. It is worth noting that the main frequency energy
of such a special signal should theoretically be equal to its total energy because it doesn’t
contain any other frequency components. The difference between theory and reality is
completely caused by computation. However, we think the difference will not cause the
vital effect on analysis result.
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Figure 1: The marginal spectrum of x(t) = sin(2πft), f = 0.01

It is unfortunate that most of signals in reality do not like such a special one. They
maybe contain various nonlinear distortion. Trying to disclose the affection caused by the
signal nonlinearity to main frequency, we give another example as follows.

Let x(t) = sin(2πft + ksin(2πft)), f = 0.01, k = 0.1, 0.2, · · · , 0.9. Their waveforms
which are distorted from the sine waveform can be treated as the results caused by nonlin-
earity. The larger k is, the sharper the distortion is, such as shown in Fig. 2, in which the
left part are the waveforms correspond to k = 0.1 ∼ 0.9 respectively from top to bottom;
the right part shows the relation between the main frequency and k where the horizontal
coordinate represents k and the vertical coordinate represents the main frequency. This
experiment suggests that the larger k is, the larger the MFS is. In other words, the
sharper the signal nonlinearity is, the larger the MFS is.

This example implies that the nonlinearity, which brings plenty of frequency compo-
nents in signal, will cause main frequency shift (MFS). In other words, it will be unreliable
to estimate signal period according to its main frequency. Most similar experiments con-
ducted by us support the observation.

Fig. 3 is a noisy version of Fig. 2. The left are produced by adding white-noise of
abundant high frequency components to those shown on the left of Fig. 2. To ensure
that the noisy signal is periodic, we construct a segment of white-noise with 100 data
firstly, then add the segment to every periods of the signal. The waveforms of the noisy
signal are shown on the left of Fig. 3, from top to bottom corresponding to k = 0.1 ∼ 0.9
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Figure 2: The left partx(t) = sin(2πft + 0.1k sin(2πft)), f = 0.01, the waveforms form
top to bottom corresponds to k = 1, 2, · · · , 9 respectively; the right part shows the relation
between the main frequency and k.

respectively. Comparing the right of Fig. 3 with the counterparts in Fig.2, it is easy to see
that the main frequency shift can be calculated correctly by means of adding white-noise.
This interesting observation is supported by a great number of experiments.

It’s unfortunate that we fail to interpret theoretically the result now. However, we
surely think it mainly profits from the EMD method after a great number of experiments
have been conducted, which show that EMD has ability to relieve the nonlinear distor-
tion in low frequency components. When the components whose frequencies are higher
than main frequency are abundant enough at each location of a signal, the nonlinearity
contained in the main frequency component will be relieved largely, which leads the main
frequency shift to be small. As an example, we demonstrate the phenomenon by the 8th
signal shown on the left of Fig. 3.

Fig.4 are the 8th signal shown on the left of Fig. 3 (corresponding k = 0.8), its 7 imfs
and the residue produced by EMD (respectively from top to bottom). It is noticed that
the period of 6th imf is about 100, but has much slighter nonlinear distortion than that of
the signal shown in 2nd row from bottom on the left of Fig.2. It is well known that EMD
extracts frequency components at each location from high frequencies to low frequen-
cies, consequently, the high frequency components, which contaminate a low frequency
signal and make the nonlinear distortion, are extracted before the low frequency compo-
nent is implemented, namely, the nonlinear distortion of the low frequency component is
eliminated along with the high frequency extraction.
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Figure 3: The noisy nonlinear period signals and their main frequency distribution

From the above analysis, it is concluded that the main frequency of a periodic sig-
nal which contains enough abundant high frequency components at each location equal
approximately to the reciprocal of the signal period.

A great number of experiments have been conducted to verify the conclusion. Fig.
5 shows the distribution with respective to the main frequencies of 100 random periodic
signals with period 100 and each containing 300 data. It is easy to see that the main
frequencies of the most signals concentrate on about 0.01, which is the reciprocal of 100.

To check the validity of the conclusion for approximately periodic signals, let us con-
sider the following 1000 approximately periodic signals: Firstly, 100 signals each contain-
ing 300 data and of amplitude 1 are generated randomly. They are usually nonperiodic
signals. Secondly, by adding them to periodic signals x(t) = k sin(2πft) for f = 0.01
and k = 0, 0.1, · · · , 0.9, 1000 signals are constructed. It is easy to see that they are
approximately periodic depending on the value of k.

Tab. 1 lists the main frequency distribution corresponding to k = 0, 0.1, · · · , 0.9 from
2nd row to the last row respectively. The maximum of each row is displayed with bold
fonts. One has no difficult in seeing that the period can be reliably estimated in most
cases, even if the signal has a little periodicity such as the case of k = 0.1. Moreover, the
higher the periodicity is, the more reliable the estimation is.
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Figure 4: The EMD of x(t) = sin(2πft + 0.1k sin(2πft)), f = 0.01, k = 0.8. x(t), its 7
imfs and the residue, are plotted respectively form top to bottom.

4 The Period Analysis of Texture Images

In this section, the analysis and results of Section 3 are employed to estimate the periods
of texture images. Before doing this, the simple and classical tactic to divide a two-
dimension texture image into one-dimension data, as shown in Fig.6 is used.

After the row or column data are extracted from a texture image, their main fre-
quencies as described in section 3 can be calculate and their main frequency distributions
can obtain. Because a natural texture image contains enough abundant high frequency
components, it should be reliable to estimate its period along horizontal and/or vertical
axes according to the main frequency distributions.

The left of Fig. 7 is a 256×256 texture image D1 from Broadz texture database. It
contains about 10 periods along horizontal axis and about 17 periods along vertical axis.
The right of Fig. 7 are the main frequency distributions: the top corresponds to the its
horizontal data and the bottom corresponds to the vertical data. It is easy to see that
the maximum corresponding to the horizontal data is at f = 0.038 ≈ 1/26. It suggests
that its horizontal period can be estimated as about 26, which is close to the real period
of 25.6. Similarly, the vertical period can be estimated as about 14.5, which is close to
the real period of 15.

The top of Fig. 8 shows the 512×512 texture image D56 from Broadz texture database.
To observe how the main frequency distributions change when the textures are similar, we
divide it into 4 sub-images of size 256×256 as shown in Fig. 8, in which the 4 sub-images
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Figure 5: The distribution distribution with respective to the main frequencies of 100
random periodic signals with period 100 and each containing 300 data.

Table 1: The main frequency distribution corresponding to k = 0, 0.1, · · · , 0.9

MF×10−3 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 others
k=0 1 3 11 11 8 10 9 7 3 4 5 2 4 2 3 17

k=0.1 2 7 14 4 11 12 20 16 8 2 2 1
k=0.2 1 2 3 4 5 10 15 20 22 10 6 2
k=0.3 2 3 6 3 3 16 26 26 11 4
k=0.4 2 2 1 7 20 32 24 11 1
k=0.5 1 1 2 11 28 34 18 5
k=0.6 2 3 1 2 12 28 37 12 3
k=0.7 2 6 32 42 17 1
k=0.8 1 1 2 5 20 56 14 1
k=0.9 1 1 1 3 29 50 15

are marked with ’A’, ’B’, ’C’ and ’D’. Fig. 8(a), (b), (e) and (f) show their corresponding
main frequency distributions along the horizontal axis. It is encouraging to see these main
frequency distributions are almost the same. Similarly, Fig. 8(c), (d), (g) and (h) are
their main frequency distributions along the vertical axis, which have similar shapes.

The discussion above and a great number of other similar experiments conducted by
us summarize that the period of a texture image along some direction can be estimated
accurately to a great extent according to its main frequency distribution.
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Figure 6: The sketch map of the divide tactic
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Figure 7: The texture image D1 and its main frequency distribution along horizontal axis

5 Conclusion

This paper gives an approach to analyze period of a signal based on Hilbert-Huang Trans-
form. By analyzing the influence on the main-frequency distribution caused by nonlin-
earity of the signal, an approximate relation between the period and the main-frequency
of an approximately periodic signal which contains plenty of high frequency components
is established. Experiments show that one can estimate the period of a signal accurately
to a great content according to its main-frequency distribution. This method is robust to
noise and can arrive at excellent estimation even if the periodicity of the signal is very
weak.
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Figure 8: The texture image D56 and the main frequency distributions of its four sub-
image in both horizontal and vertical direction
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