
CHAPTER 1 

INTRODUCTION TO THE HILBERT-HUANG TRANSFORM 
AND ITS RELATED MATHEMATICAL PROBLEMS 

Norden E. Huang 

The Hilbert-Huang transform (HHT) is an empirically based data-analysis 
method. Its basis of expansion is adaptive, so that it can produce physically mean- 
ingful representations of data from nonlinear and non-stationary processes. The 
advantage of being adaptive has a price: the difficulty of laying a firm theoretical 
foundation. This chapter is an introduction to the basic method, which is fol- 
lowed by brief descriptions of the recent developments relating to the normalized 
Hilbert transform, a confidence limit for the Hilbert spectrum, and a statistical 
significance test for the intrinsic mode function (IMF). The mathematical prob- 
lems associated with the HHT are then discussed. These problems include (i) the 
general method of adaptive data-analysis, (ii) the identification methods of non- 
linear systems, (iii) the prediction problems in nonstationary processes, which is 
intimately related to the end effects in the empirical mode decomposition (EMD), 
(iv) the spline problems, which center on finding the best spline implementation 
for the HHT, the convergence of EMD, and two-dimensional EMD, (v) the opti- 
mization problem or the best IMF selection and the uniqueness of the EMD de- 
composition, (vi) the approximation problems involving the fidelity of the Hilbert 
transform and the true quadrature of the data, and (vii) a list of miscellaneous 
mathematical questions concerning the HHT. 

1.1. Introduction 

Traditional data-analysis methods are all based on linear and stationary assump- 
tions. Only in recent years have new methods been introduced t o  analyze nonsta- 
tionary and nonlinear data. For example, wavelet analysis and the Wagner-Ville 
distribution (Flandrin 1999; Grochenig 2001) were designed for linear but non- 
stationary data. Additionally, various nonlinear time-series-analysis methods (see, 
for example, Tong 1990; Kantz and Schreiber 1997; Diks 1999) were designed for 
nonlinear but stationary and deterministic systems. Unfortunately, in most real sys- 
tems, either natural or even man-made ones, the data are most likely to  be both 
nonlinear and nonstationary. Analyzing the data  from such a system is a daunting 
problem. Even the universally accepted mathematical paradigm of data expansion 
in terms of an a priori established basis would need to  be eschewed, for the con- 
volution computation of the a priori basis creates more problems than solutions. 
A necessary condition to  represent nonlinear and nonstationary data is to have an 
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adaptive basis. An a priori defined function cannot be relied on as a basis, no matter 
how sophisticated the basis function might be. A few adaptive methods are available 
for signal analysis, as summarized by Windrow and Stearns (1985). However, the 
methods given in their book are all designed for stationary processes. For nonsta- 
tionary and nonlinear data, where adaptation is absolutely necessary, no available 
methods can be found. How can such a basis be defined? What are the mathemat- 
ical properties and problems of the basis functions? How should the general topic 
of an adaptive method for data analysis be approached? Being adaptive means 
that the definition of the basis has to be data-dependent, an a posteriorGdefined 
basis, an approach totally different from the established mathematical paradigm 
for data analysis. Therefore, the required definition presents a great challenge to 
the mathematical community. Even though challenging, new methods to examine 
data from the real world are certainly needed. A recently developed method, the 
Hilbert-Huang transform (HHT), by Huang et al. (1996, 1998, 1999) seems to be 
able to meet some of the challenges. 

The HHT consists of two parts: empirical mode decomposition (EMD) and 
Hilbert spectral analysis (HSA). This method is potentially viable for nonlinear 
and nonstationary data analysis, especially for time-frequency-energy representa- 
tions. It has been tested and validated exhaustively, but only empirically. In all the 
cases studied, the HHT gave results much sharper than those from any of the tradi- 
tional analysis methods in time-frequency-energy representations. Additionally, the 
HHT revealed true physical meanings in many of the data examined. Powerful as it 
is, the method is entirely empirical. In order to make the method more robust and 
rigorous, many outstanding mathematical problems related to the HHT method 
need to be resolved. In this section, some of the problems yet to be faced will be 
listed, in the hope of attracting the attention of the mathematical community to 
this interesting, challenging and critical research area. Some of the problems are 
easy and might be resolved in the next few years; others are more difficult and will 
probably require much more effort. In view of the history of Fourier analysis, which 
was invented in 1807 but not fully proven until 1933 (Plancherel 1933), it should be 
anticipated that significant time and effort will be required. Before discussing the 
mathematical problem, a brief introduction to the methodology of the HHT will 
first be given. Readers interested in the complete details should consult Huang et 
al. (1998, 1999). 

1.2. The Hilbert-Huang transform 

The development of the HHT was motivated by the need to describe nonlinear 
distorted waves in detail, along with the variations of these signals that naturally 
occur in nonstationary processes. As is well known, the natural physical processes 
are mostly nonlinear and nonstationary, yet the data analysis methods provide very 
limited options for examining data from such processes. The available methods are 
either for linear but nonstationary, or nonlinear but stationary and statistically de- 
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terministic processes, as stated above. To examine data from real-world nonlinear, 
nonstationary and stochastic processes, new approaches are urgently needed, for 
nonlinear processes need special treatment. The past approach of imposing a linear 
structure on a nonlinear system is just not adequate. Other then periodicity, the 
detailed dynamics in the processes from the data need to be determined because 
one of the typical characteristics of nonlinear processes is their intra-wave frequency 
modulation, which indicates the instantaneous frequency changes within one oscil- 
lation cycle. As an example, a very simple nonlinear system will be examined, given 
by the non-dissipative Duffing equation as 

d2x 
dt2 
- + x + E X 3  = ycos(wt) , 

where E is a parameter not necessarily small, and y is the amplitude of a periodic 
forcing function with a frequency w .  In (1.1), if the parameter E were zero, the system 
would be linear, and the solution would be easily found, However, if E were non- 
zero, the system would be nonlinear. In the past, any system with such a parameter 
could be solved by using perturbation methods, provided that E << 1. However, 
if E is not small compared to unity, then the system becomes highly nonlinear, 
and new phenomena such as bifurcations and chaos will result. Then perturbation 
methods are no longer an option; numerical solutions must be attempted. Either 
way, (1.1) represents one of the simplest nonlinear systems; it also contains all the 
complications of nonlinearity. By rewriting the equation in a slightly different form 
as 

d2x 
- dt2 + 2 (1 + EX2) = y cos(wt) , 

its features can be better examined. Then the quantity within the parenthesis can 
be regarded as a variable spring constant, or a variable pendulum length. As the 
frequency (or period) of the simple pendulum depends on the length, it is obvious 
that the system given in (1.2) should change in frequency from location to location, 
and time to time, even within one oscillation cycle. As Huang et al. (1998) pointed 
out, this intra-frequency frequency variation is the hallmark of nonlinear systems. In 
the past, when the analysis was based on the linear Fourier analysis, this intra-wave 
frequency variation could not be depicted, except by resorting to harmonics. Thus, 
any nonlinear distorted waveform has been referred to as “harmonic distortions.” 
Harmonics distortions are a mathematical artifact resulting from imposing a linear 
structure on a nonlinear system. They may have mathematical meaning, but not 
a physical meaning (Huang et al. 1999). For example, in the case of water waves, 
such harmonic components do not have any of the real physical characteristics of a 
real wave. The physically meaningful way to describe the system is in terms of the 
instantaneous frequency, which will reveal the intra-wave frequency modulations. 

The easiest way to compute the instantaneous frequency is by using the Hilbert 
transform, through which the complex conjugate y(t) of any real valued function 
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x ( t )  of L P  class can be determined (see, for example, Titchmarsh 1950) by 

in which the PV indicates the principal value of the singular integral. With the 
Hilbert transform, the analytic signal is defined as 

z ( t )  = z ( t )  + i y ( t )  = a(t)eie(t)  , (1.4) 

where 

a ( t )  = d m ,  and 8( t )  = arctan ( f )  . (1.5) 

Here, a( t )  is the instantaneous amplitude, and 8 is the phase function, and the 
instantaneous frequency is simply 

d8 
d t  

w = - .  

A description of the Hilbert transform with the emphasis on its many mathemat- 
ical formalities can be found in Hahn (1996). Essentially, (1.3) defines the Hilbert 
transform as the convolution of x ( t )  with l / t ;  therefore, (1.3) emphasizes the lo- 
cal properties of x ( t ) .  In (1.4), the polar coordinate expression further clarifies the 
local nature of this representation: it is the best local fit of an amplitude and phase- 
varying trigonometric function to z(t) .  Even with the Hilbert transform, defining 
the instantaneous frequency still involves considerable controversy. In fact, a sen- 
sible instantaneous frequency cannot be found through this method for obtaining 
an arbitrary function. A straightforward application, as advocated by Hahn (1996), 
will only lead to the problem of having frequency values being equally likely to be 
positive and negative for any given dataset. As a result, the past applications of the 
Hilbert transform are all limited to the narrow band-passed signal, which is narrow- 
banded with the same number of extrema and zero-crossings. However, filtering in 
frequency space is a linear operation, and the filtered data will be stripped of their 
harmonics, and the result will be a distortion of the waveforms. The real advantage 
of the Hilbert transform became obvious only after Huang et al. (1998) introduced 
the empirical mode decomposition method. 

1.2.1. The empirical mode decomposition method (the sifting 
process) 

As discussed by Huang et al. (1996, 1998, 1999), the empirical mode decomposition 
method is necessary to deal with data from nonstationary and nonlinear processes. 
In contrast to almost all of the previous methods, this new method is intuitive, 
direct, and adaptive, with an a posteriori-defined basis, from the decomposition 
method, based on and derived from the data. The decomposition is based on the 
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Figure 1.1: The test data 

simple assumption that any data consists of different simple intrinsic modes of os- 
cillations. Each intrinsic mode, linear or nonlinear, represents a simple oscillation, 
which will have the same number of extrema and zero-crossings. Furthermore, the 
oscillation will also be symmetric with respect to the “local mean.” At any given 
time, the data may have many different coexisting modes of oscillation, one su- 
perimposing on the others. The result is the final complicated data. Each of these 
oscillatory modes is represented by an intrinsic mode function (IMF) with the fol- 
lowing definition: 

(1) in the whole dataset, the number of extrema and the number of zero-crossings 

(2) at any point, the mean value of the envelope defined by the local maxima and 
must either equal or differ at most by one, and 

the envelope defined by the local minima is zero. 

An IMF represents a simple oscillatory mode as a counterpart to the simple 
harmonic function, but it is much more general: instead of constant amplitude 
and frequency, as in a simple harmonic component, the IMF can have a variable 
amplitude and frequency as functions of time. With the above definition for the 
IMF, one can then decompose any function as follows: take the test data as given 
in Fig. 1.1; identify all the local extrema, then connect all the local maxima by 
a cubic spline line as shown in the upper envelope. Repeat the procedure for the 
local minima to produce the lower envelope. The upper and lower envelopes should 
cover all the data between them, as shown in Fig. 1.2. Their mean is designated as 
ml, also shown in Fig. 1.2, and the difference between the data and ml is the first 
component hl shown in Fig. 1.3; i. e., 

hl = z( t )  - m1 . (1.7) 

The procedure is illustrated in Huang et al. (1998). 
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Figure 1.5: The first IMF component c1 after 12 steps. 

times as is required to reduce the extracted signal to an IMF. In the subsequent 
sifting processes, hl can be treated only as a proto-IMF. In the next step, it is 
treated as the data; then, 

hll = hl - 77111. (1.8) 

After repeated siftings in this manner, shown in Fig. 1.4a,b, up to k times, h l k  

becomes an IMF; that is, 

h l k  = h l ( k - 1 )  - m l k  ; (1.9) 

then, it is designated as 

c 1  = h l k  (1.10) 

the first IMF component from the data shown in Fig. 1.5. Here, a critical decision 
must be made: the stoppage criterion. Historically, two different criteria have been 
used: The first one was used in Huang et al. (1998). This stoppage criterion is 
determined by using a Cauchy type of convergence test. Specifically, the test requires 
the normalized squared difference between two successive sifting operations defined 
as 

(1.11) 

to be small. If this squared difference S D k  is smaller than a predetermined value, 
the sifting process will be stopped. This definition seems to be rigorous, but it is very 
difficult to implement in practice. Two critical questions need to be resolved: first, 
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the question of how small is small enough needs an answer. Second, this criterion 
does not depend on the definition of the IMFs. The squared difference might be 
small, but nothing guarantees that the function will have the same numbers of 
zero-crossings and extrema, for example. These shortcomings prompted Huang et 
al. (1999,2003) to propose a second criterion based on the agreement of the number 
of zero-crossings and extrema. Specifically, a S-number is pre-selected. The sifting 
process will stop only after S consecutive times, when the numbers of zero-crossings 
and extrema stay the same and are equal or differ at most by one. This second choice 
has its own difficulty: how to select the S number. Obviously, any selection is ad 
hoc, and a rigorous justification is needed. 

In a recent study of this open-ended sifting, Huang et al. (2003) used the many 
possible choices of S-numbers to form an ensemble of IMF sets, from which an 
ensemble mean and confidence were derived. Furthermore, through comparisons of 
the individual sets with the mean, Huang et al. established an empirical guide. For 
the optimal siftings, the range of S-numbers should be set between 4 and 8. More 
details will be given later. 

Now assume that a stoppage criterion was selected, and that the first IMF c1 was 
found. Overall, c1 should contain the finest scale or the shortest period component 
of the signal. It follows that c1 can be separated from the rest of the data by 

r1 = ~ ( t )  - c1 . (1.12) 

Since the residue r1 still contains longer period variations in the data, as shown in 
Fig. 1.6, it is treated as the new data and subjected to the same sifting process as 
described above. This procedure can be repeated with all the subsequent rj’s,  and 
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Figure 1.6: The original data (blue) and the residue r1. 
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(1.13) 

r2 = r1 - c1 

The sifting process can be stopped finally by any of the following predetermined 
criteria: either when the component c, or the residue T,  becomes so small that it is 
less than the predetermined value of substantial consequence, or when the residue 
T, becomes a monotonic function from which no more IMFs can be extracted. Even 
for data with zero mean, the final residue still can be different from zero. If the 
data have a trend, the final residue should be that trend. By summing up (1.12) 
and (1.13), we finally obtain 

n 

z ( t )  = c c j  + T,. (1.14) 
j = 1  

Thus, a decomposition of the data into n-empirical modes is achieved, and a residue 
r, obtained which can be either the mean trend or a constant. As discussed here, 
to apply the EMD method, a mean or zero reference is not required; the EMD 
technique needs only the locations of the local extrema. The zero reference for each 
component will be generated by the sifting process. Without the need for the zero 
reference, EMD has the unexpected benefit of avoiding the troublesome step of 
removing the mean values for the large DC term in data with a non-zero mean. 

The components of the EMD are usually physically meaningful, for the char- 
acteristic scales are defined by the physical data. To understand this point, con- 
sider the length-of-day data shown in Fig. 1.7, which measure the deviation of the 
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Figure 1.7: The length-of-day data. 
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Figure 1.8: (a, top) The mean IMF for nine different siftings. (b, bottom) The standard deviation 
of the IMF for nine different siftings. 

rotational period from the fixed cycle of 24 h. The mean and the standard deviation 
of the IMFs, given in Fig. 1.8a,b, were obtained after using a different 5'-number for 
sifting. The sifting results are quite robust with respect to the selection of a stop- 
page criteria, as indicated by the low standard deviation values; thus, these IMF 
results are physically meaningful. The first component represents the very short 
period of perturbation caused by large-scale storms to the earth's rotational speed; 
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part % in the following form: 

z( t )  = % x a j ( t ) e x p  i w j ( t ) d t  
{j:l [ J I} (1.15) 

Here, the residue r, has been left out on purpose, for it is either a monotonic function 
or a constant. Although the Hilbert transform can treat the monotonic trend as part 
of a longer oscillation, the energy involved in the residual trend representing a mean 
offset could be overpowering. In consideration of the uncertainty of the longer trend, 
and in the interest of obtaining the information contained in the other low-energy 
but clearly oscillatory components, the final non-IMF component should be left out. 
However, it could be included if physical considerations justify its inclusion. 

Equation (1.15) gives both the amplitude and frequency of each component as 
functions of time. The same data expanded in a Fourier representation would be 

x( t )  = % (1.16) 

with both aj and wj  as constants. The contrast between (1.15) and (1.16) is clear: 
the IMF represents a generalized Fourier expansion. The variable amplitude and the 
instantaneous frequency have not only greatly improved the efficiency of the expan- 
sion, but also enabled the expansion to accommodate nonlinear and nonstationary 
data. With the IMF expansion, the amplitude and the frequency modulations are 
also clearly separated. Thus, the restriction of the constant; amplitude and fixed fre- 
quency of the Fourier expansion has been overcome, with a variable amplitude and 
frequency representation. This frequency-time distribution of the amplitude is desig- 
nated as the “Hilbert amplitude spectrum” H ( w ,  t ) ,  or simply “Hilbert spectrum.” 
If amplitude squared is the more preferred method to represent energy density, 
then the squared values of the amplitude can be substituted to produce the Hilbert 
energy spectrum just as well. 

The skeleton Hilbert spectrum presentation is more desirable, for it gives more 
quantitative results. Actually, Bacry et al. (1991) and Carmona et al. (1998) have 
tried to extract the wavelet skeleton as the local maximum of the continuous wavelet 
coefficient. Even that approach is still encumbered by the harmonics. If more quali- 
tative results are desired, a fuzzy representation can also be derived from the skele- 
ton Hilbert spectrum presentation by using two-dimensional smoothing. The result 
is a smoother presentation of time-frequency distribution, but the spurious harmon- 
ics are still not needed. 

With the Hilbert Spectrum defined, we can also define the marginal spectrum 
h ( w )  as 

T 
h ( w )  = 1 H ( w ,  t )  d t  . (1.17) 



14 N .  E. Huang 

Presentation 

Nonlinear 
Nonstationarv 

The marginal spectrum offers a measure of the total amplitude (or energy) con- 
tribution from each frequency value. This spectrum represents the accumulated 
amplitude over the entire data span in a probabilistic sense. 

The combination of the empirical mode decomposition and the Hilbert spectral 
analysis is also known as the “Hilbert-Huang transform” (HHT) for short. Empir- 
ically, all tests indicate that HHT is a superior tool for time-frequency analysis of 
nonlinear and nonstationary data. It is based on an adaptive basis, and the fre- 
quency is defined through the Hilbert transform. Consequently, there is no need 
for the spurious harmonics to represent nonlinear waveform deformations as in any 
of the a priori basis methods, and there is no uncertainty principle limitation on 
time or frequency resolution from the convolution pairs based also on a priori ba- 
sis. A comparative summary of Fourier, wavelet and HHT analyses is given in the 
following table: 

energy- energy- time- energy-time- 
frequency frequency frequency 

no no Yes 
no yes ves 

global regional local, 
uncertainty uncertainty certainty 

I no 
Feature 

Extraction I yes 
discrete: no; 
continuous: yes 

I I Theoretical base I theory complete I theory complete I empirical 

This table shows that the HHT is indeed a powerful method for analyzing data 
from nonlinear and nonstationary processes: it is based on an adaptive basis; the 
frequency is derived by differentiation rather than convolution; therefore, it is not 
limited by the uncertainty principle; it is applicable to nonlinear and nonstationary 
data and presents the results in time-frequency-energy space for feature extraction. 

1.3. Recent developments 

Some recent developments in the following areas will be discussed in some detail: 

(1) normalized Hilbert transform 
(2) confidence limit 
(3) statistical significance of the IMFs. 

Basis
Frequency

Fourier Wavelet Hilbert
a priori a priori adaptive
convolution: convolution: differentiation:

no yes
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1.3.1. Normalized Hilbert transform 

It is well known that although the Hilbert transform exists for any function of 
L P  class, the phase function of the transformed function will not always yield a 
physically meaningful instantaneous frequency, as discussed above. Reducing the 
function into IMFs has improved the chance of getting a meaningful instantaneous 
frequency, but obtaining IMFs satisfies only the necessary condition; additional 
limitations have been summarized succinctly in two additional theorems: 

First, the Bedrosian theorem (1963) states that the Hilbert transform for the 
product of two functions f ( t )  and h(t) can be written as 

"f(t)h(t)l = f(t)Wh(t)l 7 (1.18) 

only if the Fourier spectra for f ( t )  and h(t)  are totally disjoint in frequency space, 
and the frequency range of the spectrum for h(t)  is higher than that of f ( t ) .  This 
limitation is critical: if the instantaneous frequency is to be computed from the 
phase function as defined in (1.3)-(1.6), the data can be expressed in the IMF form 
as 

5 ( t )  = a ( t )  cos[O(t)] ; 

3-I{a(t) cos[e(t)l) = a(t)x{cos[~(t)l) . 

(1.19) 

then, the Hilbert transform will give us the conjugate part as 

(1.20) 

However, according to the Bedrosian theorem, (1.20) can be true only if the ampli- 
tude is varying so slowly that the frequency spectra of the envelope and the carrier 
waves are disjoint. This condition has made the application of the Hilbert transform 
problematic. To satisfy this requirement, Huang and Long (2003) proposed that the 
IMFs be normalized as follows: start from the data that is already an IMF. First, 
find all the maxima of the IMFs; then, define the envelope by a spline through 
all the maxima, and designate the envelope as E(t ) .  Now, normalize the IMF by 
dividing it by E( t )  as 

(1.21) 

where Co(t) should be the carrier function with all local maxima equal to unity. 
The normalized function of the above example is given in Fig. 1.10d. 

This construction should give an amplitude always equal to unity, but anomalies 
clearly exist, and complications can arise from the spline fitting, which mainly occurs 
a t  the point where the amplitude fluctuation is large. Then the spline line could go 
under the data momentarily and cause the normalized function to have an amplitude 
greater than unity. Though these conditions are rare, they can occur. Whenever they 
do, error will certainly occur, which will be discussed next. Even with a perfect 
normalization, not all of the problems have been solved. The next difficulty is given 
by the Nuttall theorem. 
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ized amplitude could exceed unity, and the error would not be zero. The second 
complication could come from a highly complicated phase function, as discussed in 
Huang et al. (1998); then the phase plan will not be a perfect circle. Any deviation 
from the circle will result in the amplitude being different from unity. Huang and 
Long (2003) and Huang et al. (2005) conducted detailed comparisons and found the 
result quite satisfactory. Alternatively, Huang et al. (2005) suggested that the phase 
function can be found by computing the inverse cosine of the normalized function. 
The results obtained in this manner were also found to be satisfactory. Two prob- 
lems, however, still plagued this approach: first , any imperfect normalization will 
occasionally give the values of the normalized function greater than unity, as dis- 
cussed above. Under that condition, the inverse cosine will break down. Second, the 
computation precision requirement is too high near the phase angle 0" and 180". 
One can show that the problem of the normalized Hilbert transform always occurs 
at the location where the amplitude either changes drastically or is very low. 

1.3.2. Confidence limit 

In data analysis, a confidence limit is always necessary; it provides a measure of 
assurance about the legitimacy of the results. Therefore, the confidence limit for 
the Fourier spectral analysis is routinely computed, but the computation is based 
on ergodic theory, where the data are subdivided into N sections, with spectra from 
each section being computed. The confidence limit is determined from the statistical 
spread of the N different spectra. When all the conditions of ergodic theory are 
satisfied, the temporal average is treated as the ensemble average. Unfortunately, 
the ergodic condition is satisfied only if the processes are stationary; otherwise, 
averaging them will not make sense. Huang et al. (2003) have proposed a different 
approach by utilizing the existence of infinitely many ways to decompose one given 
function into difference components. Even using EMD, many different sets of IMFs 
may be obtained by varying the stoppage criteria. For example, Huang et al. (2003) 
explored the stoppage criterion by changing the S-number. Using the length-of-day 
data, they varied the S-number from 1 to 20 and found the mean and the standard 
deviation for the Hilbert spectrum. The confidence limit so derived does not depend 
on the ergodic theory. If the same data length is used, the spectral resolution is 
not downgraded in frequency space through sub-dividing of the data into sections. 
Additionally, Huang et al. have also invoked the intermittence criterion and forced 
the number of IMFs to be the same for different S-numbers. As a result, Huang et 
al. were able to find the mean for the specific IMFs shown in Fig. 1.9. Of particular 
interest are the periods of high standard deviations, from 1965 to 1970, and 1990- 
1995. These periods are the anomaly periods of the El Niiio phenomenon, when 
the sea-surface-temperature values in the equatorial region were consistently high 
based on observations, indicating a prolonged heating of the ocean, rather than the 
changes from warm to cool during the El Niiio to La Niiia changes. 
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Finally, from the confidence-limit study, an unexpected result is the determina- 
tion of the optimal S-number. Huang et al. (2003) computed the difference between 
the individual cases and the overall mean and found that a range always exists 
where the differences reach a local minimum. Based on their limited experience 
from using different datasets, Huang et al. concluded that a S-number in the range 
of 4 to 8 performed well. Logic also dictates that the S-number should not be high 
enough to drain all the physical meaning out of the IMF, nor low enough to leave 
some riding waves remaining in the resulting IMFs. 

1.3.3. Statistical significance of IMFs 

EMD is a method for separating data into different components according to their 
scales. The question of the IMFs’ statistical significance is always an issue. In data 
containing noise, how can the noise be separated confidently from the information? 
These questions were addressed by Flandrin et al. (2004), Flandrin and GonCalvks 
(2004), and Wu and Huang (2004) through a study of noise only. 

Flandrin et al. (2004) and Flandrin and GonCalvks (2004) studied the fractional 
Gaussian noises and found that the EMD is a dyadic filter. These researchers also 
found that when one plotted the root-mean-squared (RMS) values of the IMFs as a 
function of the mean period derived from the fractional Gaussian noise on a log-log 
scale, the results formed a straight line. The slope of the straight line for white 
noise is -1; however, the values change regularly with the different Hurst indices. 
Based on these results, Flandrin et al. (2004) and Flandrin and Goncalvks (2004) 
suggested that the EMD results could be used to determine what kind of noise one 
was encountering. 

Instead of fractional Gaussian noise, Wu and Huang (2004) studied the Gaussian 
white noise only. They also found the same relationship between the RMS values 
of the IMFs as a function of the mean period. Additionally, they also studied the 
statistical properties of the scattering of the data and found the bounds for the noise 
data distribution analytically. From the scattering, they deduced a 95% bound for 
the white noise. Therefore, they concluded that when a dataset is analyzed by using 
EMD, if the RMS-mean period values exist within the noise bounds, the components 
most likely represent noise. On the other hand, if the mean period-RMS values 
exceed the noise bounds, then those IMFs must represent statistically significant 
information. Thus, with the study of noise, Wu and Huang have found a way to 
discriminate noise from information. They applied this method to the Southern 
Oscillation Index (SOI) and concluded that the phenomena with the mean periods 
of 2.0, 3.1, 5.9 and 11.9 years are statistically significant signals. 

1.4. Mathematical problems related to the HHT 

Over the past few years, the HHT method has gained some recognition. Unfor- 
tunately, the full theoretical base has not been fully established. Up to this time, 
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most of the progress with the HHT has been in its application, while the underlying 
mathematical problems have been mostly left untreated. All the results have come 
from case-by-case comparisons conducted empirically. The work with the HHT is 
presently at the stage corresponding historically to that of wavelet analysis in the 
earlier 198Os, producing great results but waiting for mathematical foundations on 
which to rest its case. The work is waiting for someone like Daubechies (1992) to 
lay the mathematical foundation for the HHT as was done for wavelets. The out- 
standing mathematical problems at the forefront at the present time are as follows: 

(1) Adaptive data analysis methodology in general 
(2) Nonlinear system identification methods 
(3) Prediction problem for nonstationary processes (end effects) 
(4) Spline problems (best spline implementation for the HHT, convergence and 2-D) 
(5) Optimization problems (the best IMF selection and uniqueness) 
(6) Approximation problems (Hilbert transform and quadrature) 
(7) Miscellaneous questions concerning the HHT. 

1.4.1. Adaptive data-analysis methodology 

Most data-analysis methods are not adaptive. The established approach is to define 
a basis (such as trigonometric functions in Fourier analysis, for example). Once the 
basis is determined, the analysis is reduced to a convolution computation. This well 
established paradigm is specious, for we have no a priori reason to believe that 
the basis selected truly represents the underlying processes. Therefore, the results 
produced will not be informative. This paradigm does, however, provide a definitive 
quantification with respect to a known metric for certain properties of the data 
based on the basis selected. 

If one gives up this paradigm, no solid foundation remains, yet data-analysis 
methods need to be adaptive, for their goal is to find out the underlying processes. 
Only adaptive methods can let the data reveal their underlying processes without 
any undue influence from the basis. Unfortunately, no mathematical model or prece- 
dent exists for such an approach. Recently, adaptive data processing has gained some 
attention. Some adaptive methods are being developed (see Windrows and Stearns 
1985). Unfortunately, most of the methods available depend on feedback; therefore, 
they are limited to stationary processes. Generalizing these available methods to 
nonstationary conditions is a difficult task. 

1.4.2. Nonlinear system identification 

System-identification methods are usually based on having both input and output 
data. For an ideally controlled system, such datasets are possible, yet for most of 
the cases studied, natural or man-made, no such luxury involving data is available. 
All that might be available is a set of measured results. The question is whether 
the nonlinear characteristics can be identified from the data. This problem might 
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be ill-posed, for this is very different from the traditional input vs. output compar- 
ison. Whether the system can be identified through data only is an open question. 
Unfortunately, in most natural systems, control of the input is not possible. Addi- 
tionally, the input and even the system itself are usually unknown. The only data 
available usually correspond to the output from an unknown system. Can the sys- 
tem be identified? Or short of identification, can anything be learned about the 
system? The only thing that might be available is some general knowledge of the 
underlying controlling processes connected with the data. For example, the atmo- 
sphere and ocean are all controlled by the generalized equations for fluid dynamics 
and thermodynamics, which are nonlinear. The man-made structures, though linear 
under design conditions, will approach nonlinearity under extreme loading condi- 
tions. Such a priori knowledge could guide the search for the characteristics or the 
signatures of nonlinearity. The task, however, is still daunting. 

So far, most of the definitions or tests for nonlinearity from any data are only 
necessary conditions: for example, various probability distributions, higher-order 
spectral analysis, harmonic analysis, and instantaneous frequency (see, for example, 
Bendat 1990; Priestly 1988; Tong 1990; Kantz and Schreiber 1997). Certain diffi- 
culties are involved in making such identifications from observed data only. This 
difficulty has made some scientists talk about only “nonlinear systems” rather than 
“nonlinear data.” Such reservations are understandable, but this choice of terms 
still does not resolve the basic problem: How to identify the system nonlinearity 
from its output alone. Is doing so possible? Or, is there a definite way to define a 
nonlinear system from the data (system output) at all? This problem is made even 
more difficult when the process is also stochastic and nonstationary. With a non- 
stationary process, the various probabilities and the Fourier-based spectral analyses 
are all problematic, for those methods are based on global properties, with linear 
and stationary assumptions. 

Through the study of instantaneous frequency, intra-wave frequency modulation 
has been proposed as an indicator for nonlinearity. More recently, Huang (2003) 
identified the Teager energy operator (Kaiser 1990; Maragos et al. 1993a,b) as an 
extremely local and sharp test for harmonic distortions within any IMF derived 
from data. The combination of these local methods offers some hope for system 
identification, but the problem is not solved, for this approach is based on the as- 
sumption that the input is linear. Furthermore, all these local methods also depend 
on local harmonic distortion; they cannot distinguish a quasi-linear system from a 
truly nonlinear system. A test or definition for nonlinear-system identification based 
on only observed output is urgently needed. 

1.4.3. The prediction problem for nonstationarg processes (the end 
effects of EMD) 

End effects have plagued data analysis from the beginning of any known method. 
The accepted and timid way to deal with these effects is by using various kinds of 
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windowing, as is done routinely in Fourier analysis. Although sound in theory, such 
practices inevitably sacrifice some precious data near the ends. Furthermore, the 
use of windows becomes a serious hindrance when the data are short. In the HHT 
approach] the extension of data beyond the existing range is necessary] for a spline 
through the extrema is used to determine the IMF. Therefore] a method is needed 
to determine the spline curve between the last available extremum and the end of 
the data range. Instead of windowing, Huang et al. (1998) introduced the idea of 
using a “window frame,” a way to extend the data beyond the existing range in 
order to extract some information from all the data available. 

The extension of data, or data prediction] is a risky procedure even for linear 
and stationary processes. The problem that must be faced is how to make predic- 
tions for nonlinear and nonstationary stochastic processes. Here the age-old cozy 
shelter of the linear, stationary] low-dimension and deterministic assumptions must 
be abandoned] and the complicated real world must be faced. The data are mostly 
from high-dimensional nonlinear and nonstationary stochastic systems. Are these 
systems predictable? What conditions must be imposed on the problem to make it 
predictable? How well can the accuracy of the predictions be quantified? In prin- 
ciple] data prediction cannot be made based on past data alone. The underlying 
processes have to be involved. Can the available data be used to extract enough 
information to make a prediction? This issue is an open question a t  present. 

However, EMD has an advantage to assist the analysis: the whole data span need 
not be predicted, but only the IMF, which has a much narrower bandwidth] for all 
the IMFs should have the same number of extrema and zero-crossings. Furthermore, 
all that is needed is the value and location of the next extrema, not all the data. 
Such a limited goal notwithstanding] the task is still challenging. 

1.4.4. Spline problems (the best spline implementation for HHT, 
convergence and 2-D) 

EMD is a “Reynolds type” decomposition: it is used to extract variations from the 
data by separating the mean, in this case the local mean, from the fluctuations 
by using spline fits. Although this approach is totally adaptive] several unresolved 
problems arise from this approach. 

First, among all the spline methods, which one is the best? The answer to this 
question is critical] for it can be shown easily that all the IMFs other than the first 
are a summation of spline functions] for from (1.5) to (1.8), it follows that 

(1.23) 

in which all rn functions are generated by splines. Therefore] from equation (l.lO), 

T1 = z( t )  - c1 = rnlk + rn1(k-1) + . . . + rnll + rnl (1.24) 

is totally determined by splines. Consequently, according to ( l . l l ) ]  all the rest of the 
IMFs are also totally determined by spline functions. What kind of spline is the best 
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fit for the EMD? How can one quantify the selection of one spline vs. another? Based 
on experience, it was found that the higher-order spline functions needed additional 
subjectively determined parameters, yet the requirement violates the adaptive spirit 
of the approach. Furthermore, higher-order spline functions could also introduce 
additional length scales, and they are also more time-consuming in computations. 
Such shortcomings are why only the cubic spline was selected. However, the possible 
advantages and disadvantages of higher-order splines and even a taut spline have 
not been definitively established and quantified. 

Finally, the convergence of the EMD method is also a critical issue: is there a 
guarantee that in finite steps, a function can always be reduced into a finite number 
of IMFs? All intuitive reasoning and experience suggest that the procedure is con- 
verging. Under rather restrictive assumptions, the convergence can even be proved 
rigorously. The restricted and simplified case studied involved sifting with middle- 
points only. With further restriction of the middle-point sifting to linearly connected 
extrema, the convergence proof can be established by reductio ad absurdum, and it 
can be shown that the number of extrema of the residue function has to be less than 
or equal to that in the original function. The case of equality exists only when the 
oscillation amplitudes in the data are either monotonically increasing or decreasing. 
In this case, the sifting may never converge and forever have the same number in the 
original data and the IMF extracted. The proof is not complete in another aspect: 
can one prove the convergence once the linear connection is replaced by the cubic 
spline? Therefore, this approach to the proof is not complete. 

Recently, Chen et al. (2004) used a B-spline to implement the sifting. If one uses 
the B-spline as the base for sifting, then one can invoke the variation-diminishing 
property of the B-spline and show that the spline curve will have less extrema. The 
details of this proof still have to be established. 

1.4.5. The optimization problem (the best IMF selection and 
uniqueness mode mixing) 

Does the EMD generate a unique set of IMFs, or is the EMD method a tool to 
generate infinite sets of IMFs? From a theoretical point of view, infinitely many 
ways to decompose a given dataset are available. Experience indicates that the EMD 
process can generate many different IMF sets by varying the adjustable parameters 
in the sifting procedure. How are these different sets of IMF related? What is the 
criterion or criteria to guide the sifting? What is the statistical distribution and 
significance of the different IMF sets? Therefore, a critical question involves how to 
optimize the sifting procedure to produce the best IMF set. The difficulty is that 
it must not sift too many times and drain all the physical meaning out of each 
IMF component, and, at the same time, one must not sift too few times and fail 
to get clean IMFs. Recently, Huang et al. (2003) studied the problem of different 
sifting parameters and established a confidence limit for the resulting IMFs and 
Hilbert spectrum, but the study was empirical and limited to cubic splines only. 
Optimization of the sifting process is still an open question. 
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This question of the uniqueness of the IMF can be traced to this more funda- 
mental one: how to define the IMF more rigorously? The definition given by Huang 
et al. (1998, 1999) is hard to quantify. Fortunately, the results are quite forgiving: 
even with the vague definition, the results produced are similar enough. Is it possi- 
ble to give a rigorous mathematical definition and also find an algorithm that can 
be implemented automatically? 

Finally, there is the problem of IMF mode rectifications. Straightforward imple- 
mentation of the sifting procedure will produce mode mixing (Huang et al. 1999, 
2003), which will introduce aliasing in the IMFs. This mode mixing can be avoided if 
an “intermittence” test is invoked (see Huang et al. 2003). At this time, one can im- 
plement the intermittence test only through interactive steps. An automatic mode 
rectification program should be able to collect all the relevant segments together 
and avoid the unnecessary aliasing in the mode mixing. This step is not critical to 
the HHT, but would be a highly desirable feature of the method. 

1.4.6. Approximation problems (the Hilbert transform and 
quadrature) 

One of the conceptual breakthroughs involving the HHT has been the ability to 
define the instantaneous frequency through the Hilbert transform. Traditionally, 
two well-known theorems, the Bedrosian theorem (Bedrosian 1963) and the Nuttall 
theorem (Nuttall 1966), have considered the Hilbert transform to be unusable. The 
Bedrosian theorem states that the Hilbert transform for the product functions can 
be expressed only in terms of the product of the low-frequency function and the 
Hilbert transform of the high-frequency one, if the spectra of the two functions are 
disjointed. This condition guarantees that the Hilbert transform of a ( t )  cos[O(t)] is 
given by a( t )  sin[O(t)]. The Nuttall theorem (Nuttall 1966), further stipulates that 
the Hilbert transform of cos[O(t)] is not necessarily sin[O(t)] for an arbitrary function 
O(t). In other words, a discrepancy exists between the Hilbert transform and the 
perfect quadrature of an arbitrary function O(t). Unfortunately, the error bound 
given by Nuttall (1966) is expressed in terms of the integral of the spectrum of the 
quadrature, an unknown quantity. Therefore, the single valued error bound cannot 
be evaluated. 

Through research, the restriction of the Bedrosian theorem has been overcome 
through the EMD process and the normalization of the resulting IMFs (Huang 
2003). With this new approach, the error bound given by Nuttall has been improved 
by expressing the error bound as a function of time in terms of instantaneous en- 
ergy. These developments are major breakthroughs for the Hilbert transform and 
its applications. However, the influence of the normalization procedure must be 
quantified. As the normalization procedure depends on a nonlinear amplification 
of the data, what is the influence of this amplification on the final results? Even 
if the normalization is accepted, for an arbitrary O(t) function, the instantaneous 
frequency is only an approximation. How can this approximation be improved? 
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Also related to the normalization scheme, are other questions concerning the 
Hilbert transform: for example, what is the functional form of O(t) for the Hilbert 
transform to be the perfect quadrature and also be analytic? If the quadrature is 
not identical to the Hilbert transform, what is the error bound in the phase function 
(not in terms of energy as it has been achieved now)? 

One possible alternative is to abandon the Hilbert transform and to compute the 
phase function by using the inverse cosine of the normalized data. Two complications 
arise from this approach: the first one is the high precision needed for computing the 
phase function when its value is near nn/2. The second one is that the normalization 
scheme is only an approximation; therefore, the normalized functional value can 
occasionally exceed unity. Either way, some approximations are needed. 

1.4.7. Miscellaneous statistical questions concerning HHT 

The first question concerns the confidence limit of the HHT results. Traditionally, 
all spectral analysis results are bracketed by a confidence limit, which gives either 
a true or false measure of comfort. The traditional confidence limit is established 
from the ergodicity assumption; therefore, the processes are necessarily linear and 
stationary. If the ergodic assumptions are abandoned, can a confidence limit still 
exist without resorting to true ensemble averaging, which is practically impossible 
for most natural phenomena? The answer seems to be affirmative for Fourier anal- 
ysis. For HHT, however, a confidence limit has been tentatively established, based 
on the exploitation of repeated applications of the EMD process with various ad- 
justable parameters, which produces an ensemble of IMF sets. How representative 
are these different IMFs? How can the definition be made more rigorous? How can 
the statistical measure for such a confidence limit be quantified? 

The second question concerns the degree of nonstationarity. This question has 
led to another conceptual breakthrough, for the qualitative definition of stationarity 
has been changed to a quantitative definition of the degree of nonstationarity. In 
Huang et al. (1998), in addition to a degree of nonstationarity, a degree of statisti- 
cal nonstationarity was also given. For the degree of statistical nonstationarity, an 
averaging procedure is required. What is the time scale needed for the averaging? 

1.5. Conclusion 

Some of the problems encountered in the present state of the research have been 
discussed. Even though these issues have not been settled, the HHT method is still a 
very useful tool, but when they are settled, the HHT process will become much more 
rigorous, and the tool more robust. The author is using the HHT method routinely 
now, for as Heaviside famously said, when encountering the puriest’s objections on 
his operational calculus: “Shall I refuse my dinner because I do not fully understand 
the process of digestion.” For us, the “the process of digestion” consists of fully 
addressing the questions that we have raised in this chapter. The path is clear; 
work must now begin. 
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Finally, the need for a unified framework for nonlinear and nonstationary data 
analysis is urgent and real. Currently, the field is fragmented, with partisans be- 
longing to one camp or another. For example, researchers engaged in wavelet anal- 
ysis will not mention the Wagner-Ville distribution method, as if it does not exist 
(see, for example, any wavelet book). On the other hand, researchers engaged with 
the Wagner-Ville distribution method will not mention wavelets (see, for example, 
Cohen 1995). Such a position is unscientific, and unhealthy for the data-analysis 
community. The time is right for some support from everyone to unify the field and 
push it forward. A concerted effort should be mounted to attack the problems of 
nonlinear and nonstationary time series analysis. One logical suggestion is to orga- 
nize an activity group within SIAM to address all the mathematical and application 
problems, as well as all the scientific issues related to nonlinear and nonstationary 
data analysis. This task is worthy of the effort. 

References 

Bacry, E., A. ArnBodo, U. Fkisch, Y .  Gagne, and E. Hopfinger, 1991: Wavelet anal- 
ysis of fully developed turbulence data and measurement of scaling exponents. 
Proc. Turbulence89: Organized Structures and Turbulence in Fluid Mechanics, 
M. Lesieur, 0. Mktais, Eds., Kluwer, 203-215. 

Bedrosian, E., 1963: A product theorem for Hilbert transform. Proc. IEEE, 51, 

Bendat, J. S., 1990: Nonlinear System Analysis and Identification from Random 
Data. Wiley Interscience, 267 pp. 

Carmona, R., W. L. Hwang, and B. Torresani, 1998: Practical Time-Frequency Anal- 
ysis: Gabor and Wavelet Transform with an Implementation in S.  Academic 
Press, 490 pp. 

Chen, Q., N.  E. Huang, S. Riemenschneider, and Y. Xu, 2005: A B-spline approach 
for empirical mode decomposition. Adv. Comput. Math., in press. 

Cohen, L., 1995: Time-Frequency Analysis. Prentice Hall, 299 pp. 
Daubechies, I., 1992: Ten Lectures on Wavelets. CBMS-NSF Series in Applied 

Diks, C., 1999: Nonlinear Time Series Analysis: Methods and Applications. World 

Flandrin, P. , 1999: Tame-Frequency/Time-Scale Analysis. Academic Press, 386 pp. 
Flandrin, P., G. Rilling, and P. Gonqalvks, 2004: Empirical mode decomposition as 

a filter bank. IEEE Signal Process. Lett., 11, 112-114. 
Flandrin, P. , and P. GonCalvBs, 2004: Empirical mode decompositions as data-driven 

wavelet-like expansions. Int. J.  Wavelets Multiresolut. Inform. Process., 2, 477- 
496. 

Grochenig, K., 2001: Foundations of Time-Frequency Analysis. Birkhauser, 359 pp. 
Hahn, S., 1995: Hilbert Transforms in Signal Processing. Artech House, 442 pp. 
Huang, N. E., S. R. Long, and 2. Shen, 1996: The mechanism for frequency down- 

868-869. 

Mathematics. Vol. 61, SIAM, 357 pp. 

Scientific Press, 180 pp. 

shift in nonlinear wave evolution. Adv. Appl. Mech., 32, 59-111. 



26 N .  E. Huang 

Huang, N. E., Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, 
C. C. Tung, and H. H. Liu, 1998: The empirical mode decomposition and the 
Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. 
R. SOC. London, Ser. A,  454, 903-995. 

Huang, N. E., Z. Shen, and S. R. Long, 1999: A new view of water waves - The 
Hilbert spectrum. Annu. Rev. Fluid Mech., 31, 417-457. 

Huang, N. E., 2003: Empirical mode decomposition for analyzing acoustic signal. 
US Patent 10-073857, pending. 

Huang, N. E., and S. R. Long, 2003: Normalized Hilbert transform and instanta- 
neous frequency. NASA Patent Pending GSC 14,673-1. 

Huang, N. E., M. C. Wu, S. R. Long, S. S. P. Shen, W. Qu, P. Gloersen, and K. 
L. Fan, 2003: A confidence limit for empirical mode decomposition and Hilbert 
spectral analysis. Proc. R. SOC. London, Ser. A,  459, 2317-2345. 

Kaiser, J. F., 1990: On Teager’s energy algorithm and its generalization to contin- 
uous signals. Proc. 4th IEEE Signal Process. Workshop, Sept. 16-19, Mohonk, 
NY, IEEE, 230 pp. 

Kantz, H., and T. Schreiber, 1999: Nonlinear Time Series Analysis. Cambridge 
University Press, 304 pp. 

Maragos, P., J. F. Kaiser, and T. F. Quatieri, 1993a: On amplitude and frequency 
demodulation using energy operators. IEEE Trans. Signal Process., 41, 1532- 
1550. 

Maragos, P., J. F. Kaiser, and T.  F. Quatieri, 199313: Energy separation in signal 
modulation with application to speech analysis. IEEE Trans. Signal Process., 

Nuttall, A. H., 1966: On the quadrature approximation to the Hilbert transform of 

Plancherel, M., 1933: Sur les formules de r6ciprocitC du type de Fourier. J.  London 

Priestley, M. B., 1988: Nonlinear and Nonstationary Time Series Analysis. 

Titchmarsh, E. C., 1950: Introduction to the Theory of Fourier IntegraZ. Oxford 

Tong, H., 1990: Nonlinear Time Series Analysis. Oxford University Press, 564 pp. 
Windrows, B., and S. D. Stearns, 1985: Adaptive Signal Processing. Prentice Hall, 

474 pp. 
Wu, Z., and N. E. Huang, 2004: A study of the characteristics of white noise using 

the empirical mode decomposition method, Proc. R. SOC. London, Ser. A, 460, 

41, 3024-3051. 

modulated signals. Proc. IEEE, 54, 1458-1459. 

Math. SOC., Ser. 1 , 8,  220-226. 

Academic Press, 237 pp. 

University Press, 394 pp. 

1597-1611. 

Norden E. Huang 
Goddard Institute for Data Analysis, Code 614.2, NASA/Goddard Space Flight Cen- 
ter, Greenbelt, MD 20771, USA 
norden. e. huang@nasa.gov 




